Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laying the foundations for a green industry

02.08.2006
Australian university researchers have developed a strong, lightweight building material that they believe could generate a thriving new "green" industry for countries such as China and India.

Coal-burning power plants spend millions of dollars disposing of waste fly ash, a fine powder loaded with toxic chemicals. An estimated 200 million tonnes of the byproduct is generated in China each year, much of it sent to waste disposal sites on increasingly scarce land and it is also responsible for serious air and water pollution.

In India about 100 million tonnes of fly ash is generated each year. The Indian Government passed a law in October 2005 stating that a minimum of 25 percent of fly ash must be used in the manufacture of clay bricks for use in construction activities within a 50 km radius of coal burning thermal power plants. There are also restrictions on the excavation of top soil for the manufacture of bricks.

In the Middle East there are very few coal fired power stations and there is an acute shortage of durable building materials because of the lack of suitable clay, aggregate and sand. Quality building materials are imported at considerable cost. Thus, there is a definite market for high-quality light-weight building materials in the Middle East.

Dr Obada Kayali and Mr Karl Shaw of the University of New South Wales' Australian Defence Force Academy (UNSW@ADFA) have developed bricks and building aggregate that can be manufactured entirely from waste fly ash.

They say their unique manufacturing method traps any harmful chemicals, creating an eco-friendly construction material that saves on construction costs and reduces generation of greenhouse gases.

Flash Bricks are 28 percent lighter and 24 percent stronger than comparable clay bricks while the aggregate, Flashag, can be used to make concrete that is 22 percent lighter and 20 percent stronger than standard products. This results in lighter structures, shallower foundations, cheaper transportation, and less usage of cement and steel reinforcement. This also results in more slender building components and hence, larger rentable space.

They also generate fewer emissions during manufacture as they take less time in the kiln to manufacture than clay bricks.

"Fly ash comes straight out of the power station and can be fed straight into the brick manufacturing process," says Dr Kayali. "In China it is difficult to find a clay quarry or aggregate quarry close to a city. Many brick plants are idle due to lack of clay yet most power stations have some form of brick plant close by."

"There is growing interest in the country in reducing greenhouse gases, reducing chemical pollutants and dust emissions and stopping the alienation of the land. Flash Bricks and Flashag overcome many of these problems."

Neil Simpson of NewSouth Innovations (NSi), the university's commercialisation arm, says the products had won widespread praise from structural engineers.

"Because Flashag results in lightweight yet sturdy concrete, it can be used effectively in high-rises where smaller structural columns are needed to maximise floor space and in concrete bridges requiring longer spans."

The Fly Ash technology has two patents and licenses have been issued for the UK and US markets. NSi is seeking interest from companies wanting to develop the technology for China, Japan, Southeast Asia, Europe and India.

Susan Williamson | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>