Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laying the foundations for a green industry

02.08.2006
Australian university researchers have developed a strong, lightweight building material that they believe could generate a thriving new "green" industry for countries such as China and India.

Coal-burning power plants spend millions of dollars disposing of waste fly ash, a fine powder loaded with toxic chemicals. An estimated 200 million tonnes of the byproduct is generated in China each year, much of it sent to waste disposal sites on increasingly scarce land and it is also responsible for serious air and water pollution.

In India about 100 million tonnes of fly ash is generated each year. The Indian Government passed a law in October 2005 stating that a minimum of 25 percent of fly ash must be used in the manufacture of clay bricks for use in construction activities within a 50 km radius of coal burning thermal power plants. There are also restrictions on the excavation of top soil for the manufacture of bricks.

In the Middle East there are very few coal fired power stations and there is an acute shortage of durable building materials because of the lack of suitable clay, aggregate and sand. Quality building materials are imported at considerable cost. Thus, there is a definite market for high-quality light-weight building materials in the Middle East.

Dr Obada Kayali and Mr Karl Shaw of the University of New South Wales' Australian Defence Force Academy (UNSW@ADFA) have developed bricks and building aggregate that can be manufactured entirely from waste fly ash.

They say their unique manufacturing method traps any harmful chemicals, creating an eco-friendly construction material that saves on construction costs and reduces generation of greenhouse gases.

Flash Bricks are 28 percent lighter and 24 percent stronger than comparable clay bricks while the aggregate, Flashag, can be used to make concrete that is 22 percent lighter and 20 percent stronger than standard products. This results in lighter structures, shallower foundations, cheaper transportation, and less usage of cement and steel reinforcement. This also results in more slender building components and hence, larger rentable space.

They also generate fewer emissions during manufacture as they take less time in the kiln to manufacture than clay bricks.

"Fly ash comes straight out of the power station and can be fed straight into the brick manufacturing process," says Dr Kayali. "In China it is difficult to find a clay quarry or aggregate quarry close to a city. Many brick plants are idle due to lack of clay yet most power stations have some form of brick plant close by."

"There is growing interest in the country in reducing greenhouse gases, reducing chemical pollutants and dust emissions and stopping the alienation of the land. Flash Bricks and Flashag overcome many of these problems."

Neil Simpson of NewSouth Innovations (NSi), the university's commercialisation arm, says the products had won widespread praise from structural engineers.

"Because Flashag results in lightweight yet sturdy concrete, it can be used effectively in high-rises where smaller structural columns are needed to maximise floor space and in concrete bridges requiring longer spans."

The Fly Ash technology has two patents and licenses have been issued for the UK and US markets. NSi is seeking interest from companies wanting to develop the technology for China, Japan, Southeast Asia, Europe and India.

Susan Williamson | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>