Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laying the foundations for a green industry

02.08.2006
Australian university researchers have developed a strong, lightweight building material that they believe could generate a thriving new "green" industry for countries such as China and India.

Coal-burning power plants spend millions of dollars disposing of waste fly ash, a fine powder loaded with toxic chemicals. An estimated 200 million tonnes of the byproduct is generated in China each year, much of it sent to waste disposal sites on increasingly scarce land and it is also responsible for serious air and water pollution.

In India about 100 million tonnes of fly ash is generated each year. The Indian Government passed a law in October 2005 stating that a minimum of 25 percent of fly ash must be used in the manufacture of clay bricks for use in construction activities within a 50 km radius of coal burning thermal power plants. There are also restrictions on the excavation of top soil for the manufacture of bricks.

In the Middle East there are very few coal fired power stations and there is an acute shortage of durable building materials because of the lack of suitable clay, aggregate and sand. Quality building materials are imported at considerable cost. Thus, there is a definite market for high-quality light-weight building materials in the Middle East.

Dr Obada Kayali and Mr Karl Shaw of the University of New South Wales' Australian Defence Force Academy (UNSW@ADFA) have developed bricks and building aggregate that can be manufactured entirely from waste fly ash.

They say their unique manufacturing method traps any harmful chemicals, creating an eco-friendly construction material that saves on construction costs and reduces generation of greenhouse gases.

Flash Bricks are 28 percent lighter and 24 percent stronger than comparable clay bricks while the aggregate, Flashag, can be used to make concrete that is 22 percent lighter and 20 percent stronger than standard products. This results in lighter structures, shallower foundations, cheaper transportation, and less usage of cement and steel reinforcement. This also results in more slender building components and hence, larger rentable space.

They also generate fewer emissions during manufacture as they take less time in the kiln to manufacture than clay bricks.

"Fly ash comes straight out of the power station and can be fed straight into the brick manufacturing process," says Dr Kayali. "In China it is difficult to find a clay quarry or aggregate quarry close to a city. Many brick plants are idle due to lack of clay yet most power stations have some form of brick plant close by."

"There is growing interest in the country in reducing greenhouse gases, reducing chemical pollutants and dust emissions and stopping the alienation of the land. Flash Bricks and Flashag overcome many of these problems."

Neil Simpson of NewSouth Innovations (NSi), the university's commercialisation arm, says the products had won widespread praise from structural engineers.

"Because Flashag results in lightweight yet sturdy concrete, it can be used effectively in high-rises where smaller structural columns are needed to maximise floor space and in concrete bridges requiring longer spans."

The Fly Ash technology has two patents and licenses have been issued for the UK and US markets. NSi is seeking interest from companies wanting to develop the technology for China, Japan, Southeast Asia, Europe and India.

Susan Williamson | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>