Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Composite Material Developed for Light-Weight Building

22.12.2005


Scientists at the Technische Universität Dresden/Germany have been developing an innovative composite material – “textile reinforced concrete“ – which is to serve for the structural reinforcement of buildings. For seven years now, more than 50 scientists from eight institutes have been collaborating in a research project entitled “Textile Reinforcements for Structural Strengthening and Repair“. The project has been funded by the German Research Foundation which has approved of the project’s third phase in June 2005, granting 1,5 million euros p.a.



The research team is made up of scientists from faculties of the Technische Universität Dresden as diverse as the Faculty of Civil Engineering, the Faculty of Mechanical Engineering and the Faculty of Forestry, Geosciences and Hydrosciences but also from the Institute of Polymer Research e.V. The focus of the scientists has mainly been on the structural reinforcement of buildings with the help of textile reinforced concrete. The benefits of the new composite material are obvious: Concrete bears up under great pressure. However, since this is not true for tensile loads, the concrete has to be reinforced, using steel. Yet because of the steel’s tendency to oxidise it has to be covered with a concrete layer sufficiently thick so the oxidisation is prevented. As a consequence of construction, the combination of both concrete and steel creates a particular thickness corresponding with a certain weight. Because of this, experts have been trying for many years to use alkali-resistant glass fibres instead of steel in order to produce slim, light-weight and non-corrosive structures.

Textile reinforced concrete has been jointly developed by Professor Peter Offermann of the Institute of Textile and Clothing Technology and Professor Curbach of the Institute of Concrete Structures as well as other scientists at the TU Dresden. It could be ideally used for the structural strengthening of old buildings presumably reinforced with steel. However, the new compound has generated a lot of questions, for instance it has to correspond with safety standards necessary in civil engineering. Thus, the research project divides into 16 sub-projects each of which deals with detailed individual questions. The project is characterised by interdisciplinary cooperation. Frequently, work results raise novel questions and the general development impacts upon the research, too: “We partly change from glass to carbon because the price of carbon is getting more and more favourable nearly every day“ says Professor Curbach. Carbon shows a great strength and offers additional benefits with regard to the longtime characteristics important for buildings.

Prof. Manfred Curbach | alfa
Further information:
http://sfb528.tu-dresden.de
http://www.tu-dresden.de

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>