Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Composite Material Developed for Light-Weight Building

22.12.2005


Scientists at the Technische Universität Dresden/Germany have been developing an innovative composite material – “textile reinforced concrete“ – which is to serve for the structural reinforcement of buildings. For seven years now, more than 50 scientists from eight institutes have been collaborating in a research project entitled “Textile Reinforcements for Structural Strengthening and Repair“. The project has been funded by the German Research Foundation which has approved of the project’s third phase in June 2005, granting 1,5 million euros p.a.



The research team is made up of scientists from faculties of the Technische Universität Dresden as diverse as the Faculty of Civil Engineering, the Faculty of Mechanical Engineering and the Faculty of Forestry, Geosciences and Hydrosciences but also from the Institute of Polymer Research e.V. The focus of the scientists has mainly been on the structural reinforcement of buildings with the help of textile reinforced concrete. The benefits of the new composite material are obvious: Concrete bears up under great pressure. However, since this is not true for tensile loads, the concrete has to be reinforced, using steel. Yet because of the steel’s tendency to oxidise it has to be covered with a concrete layer sufficiently thick so the oxidisation is prevented. As a consequence of construction, the combination of both concrete and steel creates a particular thickness corresponding with a certain weight. Because of this, experts have been trying for many years to use alkali-resistant glass fibres instead of steel in order to produce slim, light-weight and non-corrosive structures.

Textile reinforced concrete has been jointly developed by Professor Peter Offermann of the Institute of Textile and Clothing Technology and Professor Curbach of the Institute of Concrete Structures as well as other scientists at the TU Dresden. It could be ideally used for the structural strengthening of old buildings presumably reinforced with steel. However, the new compound has generated a lot of questions, for instance it has to correspond with safety standards necessary in civil engineering. Thus, the research project divides into 16 sub-projects each of which deals with detailed individual questions. The project is characterised by interdisciplinary cooperation. Frequently, work results raise novel questions and the general development impacts upon the research, too: “We partly change from glass to carbon because the price of carbon is getting more and more favourable nearly every day“ says Professor Curbach. Carbon shows a great strength and offers additional benefits with regard to the longtime characteristics important for buildings.

Prof. Manfred Curbach | alfa
Further information:
http://sfb528.tu-dresden.de
http://www.tu-dresden.de

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>