Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inexpensive new instruments test building sealants under real-world conditions

06.04.2011
Sealants, like weather stripping, are what separates the inside from the outside of a building, byproviding a barrier that prevents water from seeping in, for example, or heat from leaking out. The challenge, says research chemist Christopher White of the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, is predicting when they will fail.

Current methods test sealants statically, by placing them outdoors for long periods of time, to measure their resistance to the elements. The problem, says White, is that under normal conditions, sealants are also affected by constant movement: the temperature-induced expansion and contraction of the different kinds of materials they seal together—such as glass, in a window, and steel, in the window and building frame.

"When you put sealant on a building, it is because the glass window and steel frame expand and contract at different rates with changes in temperature," he explains. "The sealant needs to be able to seal this gap, as it changes." This creates fatigue in the sealant, eventually causing it to crack and fail.

Using simple materials that can largely be purchased from a hardware store—including PVC pipe, wood, steel supporting frames, and toilet flanges—White and his colleagues have developed the first instruments to test sealants under real-world conditions, while monitoring their displacement and load with sensors and tracking environmental conditions with a weather station. "This new device—which is very inexpensive—induces movement that is very similar to what a sealant would see in the actual application, in a building," he says.

The designs of the two devices—one that puts sealants in tension and one that puts them in compression when cold—have been passed along to an industrial consortium of sealant manufacturers working with NIST. "Two companies have actually built and are using them for sealant testing," says White.

The paper, "Design, Fabrication and Implementation of Thermally Driven Devices for Building Joint Sealants," by Christopher White, Kar Tean Tan, Emmet O'Brien, Don Huntson, and Joannie Chin, appears in the Review of Scientific Instruments. See: URL

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Review of Scientific Instruments

Review of Scientific Instruments, published by the American Institute of Physics, is devoted to scientific instruments, apparatus, and techniques. Its contents include original and review articles on instruments in physics, chemistry, and the life sciences; and sections on new instruments and new materials. One volume is published annually. Conference proceedings are occasionally published and supplied in addition to the Journal's scheduled monthly issues. RSI publishes information on instruments, apparatus, techniques of experimental measurement, and related mathematical analysis. Since the use of instruments is not confined to the physical sciences, the journal welcomes contributions from any of the physical and biological sciences and from related cross-disciplinary areas of science and technology. See: http://rsi.aip.org/

Charles Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>