Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

70-foot-long, 52-ton concrete bridge survives series of simulated earthquakes

17.07.2014

University of Nevada, Reno's new Earthquake Engineering Lab hosts multiple-shake-table experiments

A 70-foot-long, 52-ton concrete bridge survived a series of earthquakes in the first multiple-shake-table experiment in the University of Nevada, Reno's new Earthquake Engineering Lab, the newest addition to the world-renowned earthquake/seismic engineering facility.


A 70-foot-long, 52-ton concrete bridge survived a series of earthquakes in the first multiple-shake-table experiment in the University of Nevada, Reno's new Earthquake Engineering Lab, the newest addition to the world-renowned earthquake and seismic engineering facility.

Credit: University of Nevada, Reno

"It was a complete success. The bridge withstood the design standard very well and today went over and above 2.2 times the design standard," John Stanton, civil and environmental engineering professor and researcher from the University of Washington, said. Stanton collaborated with Foundation Professor David Sanders of the University of Nevada, Reno in the novel experiment.

"The bridge performed very well," Sanders said. "There was a lot of movement, about 12 percent deflection – which is tremendous – and it's still standing. You could hear the rebar inside the columns shearing, like a zipper opening. Just as it would be expected to do."

The set of three columns swayed precariously, the bridge deck twisted and the sound filled the cavernous laboratory as the three 14- by 14-foot, 50-ton-capacity hydraulically driven shake tables moved the massive structure.

"Sure we broke it, but we exposed it to extreme, off-the-scale conditions," Stanton said. "The important thing is it's still standing, with the columns coming to rest right where they started, meaning it could save lives and property. I'm quite happy."

The bridge was designed and the components were pre-cast at the University of Washington in Seattle, and then built atop three 14- by 14-foot, 50-ton-capacity hydraulically driven shake tables in the 24,500 square-foot lab. It was shaken in a series of simulated earthquakes, culminating in the large ground motions similar to those recorded in the deadly and damaging 1995 magnitude 6.9 earthquake in Kobe, Japan.

The rocking, pre-tensioned concrete bridge support system is a new bridge engineering design the team has developed with the aim of saving lives, reducing on-site construction time and minimizing earthquake damage.

"By building the components off-site we can save time with construction on-site, minimizing interruptions in traffic and lowering construction costs," Sanders said. "In this case, the concrete columns and beams were pre-cast and tensioned at the University of Washington. Other components were built here at the University of Nevada, Reno. It took us only a month to build the bridge, in what would otherwise be a lengthy process."

"This can't be done anywhere else in the nation, and perhaps the world," Ian Buckle, director of the lab and professor of civil engineering, said of the test. "Of course we've been doing these types of large-scale structures experiments for years, but it's exciting to have this first test using multiple tables in this building complete. It's good to see the equipment up and running successfully.

When combined with the University's Large-Scale Structures Laboratory, just steps away from the new lab, the facility comprises the biggest, most versatile large-scale structures, earthquake/seismic engineering facility in the United States, according to National Institute of Standards and Technology, and possibly the largest University-based facility of its kind in the world.

A grand opening was held recently for the $19 million lab expansion project, funded with $12.2 million by the U.S. Department of Commerce's National Institute of Standards and Technology, funds from the Department of Energy, as well as University and donor funds. The expansion allows a broader range of experiments and there is additional space to add a fifth large shake table.

"Our facility is unique worldwide and, combined with the excellence of our faculty and students, will allow us to make even greater contributions to the seismic safety of our state, the nation and the world," Manos Maragakis, dean of the College of Engineering, said. "We will test new designs and materials that will improve our homes, hospitals, offices and highway systems. Remarkable research is carried on here. Getting to this point has taken a lot of hard work. It's both a culmination and a beginning, ushering in a new era."

###

The University of Nevada, Reno earthquake simulation facility is managed as a national shared-use NEES equipment site created and funded by the National Science Foundation to provide new earthquake engineering research testing capabilities for large structural systems.

The rocking bridge-bent accelerated bridge construction project is sponsored by the National Science Foundation George Brown Network for Earthquake Engineering Systems Research Program (Award #1207903).

For more technical information about the experiment, see the news release posted at the NEES website: https://nees.org/announcements/new-bridge-design-improves-earthquake-resistance-reduces-damage-and-speeds-construction.

YouTube of bridge shaking: https://www.youtube.com/watch?v=6jkdsIfs6pU

Time-lapse and photo gallery of construction of the new laboratory: http://imedia.unr.edu/ShakerTables/.

Time-lapse video of bridge construction: http://youtu.be/MjDcEA4f40M.

Founded in 1874 as Nevada's land-grant university, the University of Nevada, Reno ranks in the top tier of best national universities. With nearly 19,000 students, the University is driven to contribute a culture of student success, world-improving research and outreach that enhances communities and business. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and home to one of the largest study-abroad consortiums, the University extends across the state and around the world. For more information, visit http://www.unr.edu.

Mike Wolterbeek | Eurek Alert!

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>