Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

70-foot-long, 52-ton concrete bridge survives series of simulated earthquakes

17.07.2014

University of Nevada, Reno's new Earthquake Engineering Lab hosts multiple-shake-table experiments

A 70-foot-long, 52-ton concrete bridge survived a series of earthquakes in the first multiple-shake-table experiment in the University of Nevada, Reno's new Earthquake Engineering Lab, the newest addition to the world-renowned earthquake/seismic engineering facility.


A 70-foot-long, 52-ton concrete bridge survived a series of earthquakes in the first multiple-shake-table experiment in the University of Nevada, Reno's new Earthquake Engineering Lab, the newest addition to the world-renowned earthquake and seismic engineering facility.

Credit: University of Nevada, Reno

"It was a complete success. The bridge withstood the design standard very well and today went over and above 2.2 times the design standard," John Stanton, civil and environmental engineering professor and researcher from the University of Washington, said. Stanton collaborated with Foundation Professor David Sanders of the University of Nevada, Reno in the novel experiment.

"The bridge performed very well," Sanders said. "There was a lot of movement, about 12 percent deflection – which is tremendous – and it's still standing. You could hear the rebar inside the columns shearing, like a zipper opening. Just as it would be expected to do."

The set of three columns swayed precariously, the bridge deck twisted and the sound filled the cavernous laboratory as the three 14- by 14-foot, 50-ton-capacity hydraulically driven shake tables moved the massive structure.

"Sure we broke it, but we exposed it to extreme, off-the-scale conditions," Stanton said. "The important thing is it's still standing, with the columns coming to rest right where they started, meaning it could save lives and property. I'm quite happy."

The bridge was designed and the components were pre-cast at the University of Washington in Seattle, and then built atop three 14- by 14-foot, 50-ton-capacity hydraulically driven shake tables in the 24,500 square-foot lab. It was shaken in a series of simulated earthquakes, culminating in the large ground motions similar to those recorded in the deadly and damaging 1995 magnitude 6.9 earthquake in Kobe, Japan.

The rocking, pre-tensioned concrete bridge support system is a new bridge engineering design the team has developed with the aim of saving lives, reducing on-site construction time and minimizing earthquake damage.

"By building the components off-site we can save time with construction on-site, minimizing interruptions in traffic and lowering construction costs," Sanders said. "In this case, the concrete columns and beams were pre-cast and tensioned at the University of Washington. Other components were built here at the University of Nevada, Reno. It took us only a month to build the bridge, in what would otherwise be a lengthy process."

"This can't be done anywhere else in the nation, and perhaps the world," Ian Buckle, director of the lab and professor of civil engineering, said of the test. "Of course we've been doing these types of large-scale structures experiments for years, but it's exciting to have this first test using multiple tables in this building complete. It's good to see the equipment up and running successfully.

When combined with the University's Large-Scale Structures Laboratory, just steps away from the new lab, the facility comprises the biggest, most versatile large-scale structures, earthquake/seismic engineering facility in the United States, according to National Institute of Standards and Technology, and possibly the largest University-based facility of its kind in the world.

A grand opening was held recently for the $19 million lab expansion project, funded with $12.2 million by the U.S. Department of Commerce's National Institute of Standards and Technology, funds from the Department of Energy, as well as University and donor funds. The expansion allows a broader range of experiments and there is additional space to add a fifth large shake table.

"Our facility is unique worldwide and, combined with the excellence of our faculty and students, will allow us to make even greater contributions to the seismic safety of our state, the nation and the world," Manos Maragakis, dean of the College of Engineering, said. "We will test new designs and materials that will improve our homes, hospitals, offices and highway systems. Remarkable research is carried on here. Getting to this point has taken a lot of hard work. It's both a culmination and a beginning, ushering in a new era."

###

The University of Nevada, Reno earthquake simulation facility is managed as a national shared-use NEES equipment site created and funded by the National Science Foundation to provide new earthquake engineering research testing capabilities for large structural systems.

The rocking bridge-bent accelerated bridge construction project is sponsored by the National Science Foundation George Brown Network for Earthquake Engineering Systems Research Program (Award #1207903).

For more technical information about the experiment, see the news release posted at the NEES website: https://nees.org/announcements/new-bridge-design-improves-earthquake-resistance-reduces-damage-and-speeds-construction.

YouTube of bridge shaking: https://www.youtube.com/watch?v=6jkdsIfs6pU

Time-lapse and photo gallery of construction of the new laboratory: http://imedia.unr.edu/ShakerTables/.

Time-lapse video of bridge construction: http://youtu.be/MjDcEA4f40M.

Founded in 1874 as Nevada's land-grant university, the University of Nevada, Reno ranks in the top tier of best national universities. With nearly 19,000 students, the University is driven to contribute a culture of student success, world-improving research and outreach that enhances communities and business. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and home to one of the largest study-abroad consortiums, the University extends across the state and around the world. For more information, visit http://www.unr.edu.

Mike Wolterbeek | Eurek Alert!

More articles from Architecture and Construction:

nachricht Working comfortably in summer heat
02.06.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht NEST: building of the future is up and running
23.05.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>