Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Web-based innovation improves, eases agricultural terrace design

25.09.2009
A new internet-based tool for designing agricultural terraces promises to reduce the considerable labor involved and to optimize design by allowing rapid development of alternative layouts.

Writing in the September 2009 issue of Resource: Engineering & Technology for a Sustainable World, Allen L. Thompson, Associate Professor of Biological and Agricultural Engineering at the University of Missouri, introduces a web-based, computer-assisted tool that may reduce the time currently required for the task by as much as half.

The new tool is intended to facilitate terrace installation on complex fields, to satisfy conservation goals and make better use of federal and state cost-share dollars. Contractors, landowners, and resource conservation personnel will benefit with the ability to select the most efficient and cost-effective terrace layouts.

Current terrace layout methods are time consuming. Rarely is it practical to develop more than one design that can be compared side-by-side for cost, conservation effectiveness, and farmability. Thompson's program will lessen design time by taking information about boundaries, desired row spacing, equipment requirements, water flow and other considerations and quickly producing several layout options.

Because the system is internet-based, it has the advantage of utilizing uploadable topographic data collected with global positioning systems. "It also provides a centralized database that is regularly updated," Thompson writes, "ensuring easy access to the most current data for soils and topography." Ongoing revisions to the program will permit the use of light detection and ranging (LIDAR) data, with the eventual goal to include calculation of cut and fill volumes and predicted soil loss.

Thompson's program builds on other tools developed in recent decades, taking design capabilities to a greater sophistication. Automated terrace layout has been slow in development, he explains, because of the complexity of the calculations required and the lack of high-precision digital elevation data. "However, LIDAR is becoming more readily available, and web resources have greatly improved in the last few years, both of which have helped generate interest and research support in this area."

Beta testing of the program is currently underway, after which the it will be available to the public.

For a copy of the complete Resource article, contact Dolores Landeck, landeck@asabe.org.

The American Society of Agricultural and Biological Engineers is a scientific and educational organization dedicated to the advancement of engineering applicable to agricultural, food, and biological systems. Members are consultants, managers and others who have the training and experience to understand the interrelationships between technology and living systems. Founded in 1907 and headquartered in St Joseph, Michigan, ASABE comprises 9,000 members from more than 100 countries. For further information, contact ASABE, 2950 Niles Rd, St Joseph, Michigan, 49085; 269-429-0300; hq@asabe.org; www.asabe.org.

Dolores Landeck | EurekAlert!
Further information:
http://www.asabe.org

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>