Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water, water -- not everywhere: Mapping water trends for African maize


Today's food production relies heavily on irrigation, but across sub-Saharan Africa only 4 percent of cultivated land is irrigated, compared with a global average of 18 percent. Small-scale farming is the main livelihood for many people in the region, who depend on rainfall to water their crops.

To understand how climate change may affect the availability of water for agriculture, researchers at Princeton University analyzed trends in the water cycle in maize-growing areas of 21 African countries between 1979 and 2010. The team examined both levels of rainfall and the evaporative demand of the atmosphere — the combined effects of evaporation and transpiration, which is the movement of water through plants.

Water Availability in Africa: 1979 to 2010

Researchers analyzed water availability trends in African maize-growing regions from 1979 to 2010. Each quarter-degree grid cell represents a 200-square-mile area and is colored according to its average water availability level during the maize growing season. In redder areas, water availability is more limited by rainfall levels, while bluer areas are more limited by evaporative demand.

Credit: Image source: Environmental Research Letters

Overall, they found increases in water availability during the maize-growing season, although the trends varied by region. The greater availability of water generally resulted from a mixture of increased rainfall and decreased evaporative demand.

However, some regions of East Africa experienced declines in water availability, the study found. "Some places, like parts of Tanzania, got a double whammy that looks like a declining trend in rainfall as well as an increasing evaporative demand during the more sensitive middle part of the growing season," said Lyndon Estes, the study's lead author and an associate research scholar in the Program in Science, Technology and Environmental Policy at the Woodrow Wilson School of Public and International Affairs. The analysis was published in the July issue of the journal Environmental Research Letters.

... more about:
»African »Environmental »crop »maize »rainfall »season

A key goal of the study was to incorporate reliable data on factors that influence evaporative demand. These include temperature, wind speed, humidity and net radiation — defined as the amount of energy from the sun that is absorbed by the land, minus the amount reflected back into the atmosphere by the Earth's surface.

Measurements of three of these parameters came from the Princeton University Global Meteorological Forcing Dataset (PGF) previously developed by two of the study's authors, Research Scholar Justin Sheffield and Eric F. Wood, the Susan Dod Brown Professor of Civil and Environmental Engineering and the study's senior author.

The PGF merges a variety of weather and satellite data, and covers all land areas at a resolution of three hours and one degree of latitude or longitude (one degree of latitude is about 70 miles). Nathaniel Chaney, a graduate student who works with Sheffield, downscaled the data to a resolution of about 15 miles. He incorporated observations from African weather stations to improve the accuracy of the data. To do this, he used statistical techniques based on the principle that areas close to one another are likely to have similar weather.

The team also had to correct the data for errors due to changes in instruments or satellites, which can create what appear to be sudden jumps in temperature or wind speed. "When you're dealing with gridded global weather data, they come with many warts," Estes said. "So we try to remove as many of those warts as possible," he said, to gain a faithful picture of weather changes at each location.

Most areas saw a decrease in evaporative demand, leading to higher water availability. The researchers analyzed the contributions of different factors to this decrease, and found that a downward trend in net radiation was largely responsible for the change.

This was a surprising result, according to Estes, who said he expected to see decreases in evaporative demand, but thought lower wind speeds would have a greater impact than drops in net radiation. In a 2012 study published in the journal Nature, Sheffield and Wood showed that diminished wind speeds have helped to offset the effects of rising temperatures that would otherwise lead to an increase in droughts.

Another study found that decreasing wind speeds contributed to declining evaporative demand in South Africa. The current study only examined water availability during the maize growing season, which could account for this discrepancy, Estes said.

The trends revealed by this research could have implications for agricultural policies and practices, including irrigation planning, timing of planting and choice of crop varietals. For example, in Burkina Faso in West Africa, a comparison of different parts of the growing season showed a decrease in water availability early in the season, but an increase at later time points. This might mean that the rainy season is starting later, in which case farmers in that region might adapt by planting their maize later. In South Africa, evaporative demand dropped in many areas; this could inform a reallocation of water use.

According to Estes, this study, which examined only 34 percent of all African maize-growing areas, may serve as a framework to guide more detailed analyses within individual countries. It's also essential to understand the relationship between changes in water availability and changes in actual crop yields, which is more complex because yield trends are influenced by numerous political and economic factors, in addition to farming practices. That's where Estes hopes to focus his next efforts. "All those factors would have to be teased out to isolate what these changes in water supply and demand mean for crop production," he said.


Other researchers in Princeton's Department of Civil and Environmental Engineering involved in the study include graduate student Julio Herrera-Estrada and Associate Professor Kelly Caylor.

Catherine Zandonella | Eurek Alert!
Further information:

Further reports about: African Environmental crop maize rainfall season

More articles from Agricultural and Forestry Science:

nachricht Harnessing a peptide holds promise for increasing crop yields without more fertilizer
25.11.2015 | University of Massachusetts at Amherst

nachricht Study shows how crop prices and climate variables affect yield and acreage
18.11.2015 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>