Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water, water -- not everywhere: Mapping water trends for African maize

22.07.2014

Today's food production relies heavily on irrigation, but across sub-Saharan Africa only 4 percent of cultivated land is irrigated, compared with a global average of 18 percent. Small-scale farming is the main livelihood for many people in the region, who depend on rainfall to water their crops.

To understand how climate change may affect the availability of water for agriculture, researchers at Princeton University analyzed trends in the water cycle in maize-growing areas of 21 African countries between 1979 and 2010. The team examined both levels of rainfall and the evaporative demand of the atmosphere — the combined effects of evaporation and transpiration, which is the movement of water through plants.

Water Availability in Africa: 1979 to 2010

Researchers analyzed water availability trends in African maize-growing regions from 1979 to 2010. Each quarter-degree grid cell represents a 200-square-mile area and is colored according to its average water availability level during the maize growing season. In redder areas, water availability is more limited by rainfall levels, while bluer areas are more limited by evaporative demand.

Credit: Image source: Environmental Research Letters

Overall, they found increases in water availability during the maize-growing season, although the trends varied by region. The greater availability of water generally resulted from a mixture of increased rainfall and decreased evaporative demand.

However, some regions of East Africa experienced declines in water availability, the study found. "Some places, like parts of Tanzania, got a double whammy that looks like a declining trend in rainfall as well as an increasing evaporative demand during the more sensitive middle part of the growing season," said Lyndon Estes, the study's lead author and an associate research scholar in the Program in Science, Technology and Environmental Policy at the Woodrow Wilson School of Public and International Affairs. The analysis was published in the July issue of the journal Environmental Research Letters.

... more about:
»African »Environmental »crop »maize »rainfall »season

A key goal of the study was to incorporate reliable data on factors that influence evaporative demand. These include temperature, wind speed, humidity and net radiation — defined as the amount of energy from the sun that is absorbed by the land, minus the amount reflected back into the atmosphere by the Earth's surface.

Measurements of three of these parameters came from the Princeton University Global Meteorological Forcing Dataset (PGF) previously developed by two of the study's authors, Research Scholar Justin Sheffield and Eric F. Wood, the Susan Dod Brown Professor of Civil and Environmental Engineering and the study's senior author.

The PGF merges a variety of weather and satellite data, and covers all land areas at a resolution of three hours and one degree of latitude or longitude (one degree of latitude is about 70 miles). Nathaniel Chaney, a graduate student who works with Sheffield, downscaled the data to a resolution of about 15 miles. He incorporated observations from African weather stations to improve the accuracy of the data. To do this, he used statistical techniques based on the principle that areas close to one another are likely to have similar weather.

The team also had to correct the data for errors due to changes in instruments or satellites, which can create what appear to be sudden jumps in temperature or wind speed. "When you're dealing with gridded global weather data, they come with many warts," Estes said. "So we try to remove as many of those warts as possible," he said, to gain a faithful picture of weather changes at each location.

Most areas saw a decrease in evaporative demand, leading to higher water availability. The researchers analyzed the contributions of different factors to this decrease, and found that a downward trend in net radiation was largely responsible for the change.

This was a surprising result, according to Estes, who said he expected to see decreases in evaporative demand, but thought lower wind speeds would have a greater impact than drops in net radiation. In a 2012 study published in the journal Nature, Sheffield and Wood showed that diminished wind speeds have helped to offset the effects of rising temperatures that would otherwise lead to an increase in droughts.

Another study found that decreasing wind speeds contributed to declining evaporative demand in South Africa. The current study only examined water availability during the maize growing season, which could account for this discrepancy, Estes said.

The trends revealed by this research could have implications for agricultural policies and practices, including irrigation planning, timing of planting and choice of crop varietals. For example, in Burkina Faso in West Africa, a comparison of different parts of the growing season showed a decrease in water availability early in the season, but an increase at later time points. This might mean that the rainy season is starting later, in which case farmers in that region might adapt by planting their maize later. In South Africa, evaporative demand dropped in many areas; this could inform a reallocation of water use.

According to Estes, this study, which examined only 34 percent of all African maize-growing areas, may serve as a framework to guide more detailed analyses within individual countries. It's also essential to understand the relationship between changes in water availability and changes in actual crop yields, which is more complex because yield trends are influenced by numerous political and economic factors, in addition to farming practices. That's where Estes hopes to focus his next efforts. "All those factors would have to be teased out to isolate what these changes in water supply and demand mean for crop production," he said.

###

Other researchers in Princeton's Department of Civil and Environmental Engineering involved in the study include graduate student Julio Herrera-Estrada and Associate Professor Kelly Caylor.

Catherine Zandonella | Eurek Alert!
Further information:
http://www.princeton.edu/main/

Further reports about: African Environmental crop maize rainfall season

More articles from Agricultural and Forestry Science:

nachricht Climate change: Trade liberalization could buffer economic losses in agriculture
25.08.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht Fungal intruder ante portas!
19.08.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

An effective and low-cost solution for storing solar energy

25.08.2016 | Power and Electrical Engineering

PRB projects world population rising 33 percent by 2050 to nearly 10 billion

25.08.2016 | Social Sciences

Nerve cells with a sense of rhythm

25.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>