Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USDA Scientists Say Mix-and-Match Cover Cropping Can Optimize Organic Production

05.02.2013
Farmers can fine-tune their use of cover crops to help manage costs and maximize benefits in commercial organic production systems, according to U.S. Department of Agriculture (USDA) scientists.

Production expenses for high-value organic crops like lettuce and broccoli can exceed $7,000 per acre, so producers often try to streamline costs with an annual two- to three-crop rotation. Agricultural Research Service (ARS) horticulturalist Eric Brennan designed a long-term investigation that examined several different cover cropping strategies for an annual organic lettuce-broccoli production system. ARS is USDA's chief intramural scientific research agency, and this work supports the USDA priority of promoting international food security.

The researcher selected three winter cover crops often grown in the Salinas, Calif., area—rye, mustard, and a legume-rye mix—and planted each cover crop using either a typical seeding rate or a seeding rate that was three times higher. Seeding rates can influence a cover crop's ability to smother weeds.

During lettuce and broccoli production, Brennan ensured all systems received the same fertilizer and irrigation inputs and pest management. The harvest and sale of the crops, which met all USDA organic standards, were conducted by a commercial harvester.

Brennan's results indicated that all three cover crops yielded more dry matter than the two tons of crop residue per acre often recommended for maintaining soil organic matter. The legume-rye and rye cover crops produced approximately 25 percent more dry matter biomass than the mustard crops. But effectively suppressing weeds with the legume-rye crops required seeding at three times the typical rate, while rye and mustard crops appeared to suppress weeds adequately with typical seeding rates.

The long-term study also provided Brennan with more data about year-to-year yield variations in the legume-rye mix, including why legumes, which make up most of the seed costs, are not consistently abundant. Brennan thinks cooler early-season weather helps legumes compete with the rye. So when a hot and dry autumn is expected, producers might want to use a rye cover crop and skip spending the money on a cover crop with legumes.

Brennan, who works at the ARS Crop Improvement and Protection Research Unit in Salinas, has published some his findings in Agronomy Journal and Applied Soil Ecology.

Read more about this research in the February 2013 issue of Agricultural Research magazine.

Ann Perry | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>