Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Understanding plant-soil interaction could lead to new ways to combat weeds


Using high-powered DNA-based tools, a recent study at the University of Illinois identified soil microbes that negatively affect ragweed and provided a new understanding of the complex relationships going on beneath the soil surface between plants and microorganisms.

"Plant scientists have been studying plant-soil feedback for decades," said U of I microbial ecologist Tony Yannarell. "Some microbes are famous for their ability to change the soil, such as the microbes that are associated with legumes—we knew about those bacteria. But now we have the ability to use high-power DNA fingerprinting tools to look at all of the microbes in the soil, beyond just the ones we've known about. We were able to look at an entire microbial community and identify those microbes that both preferred ragweed and affected its growth."

Caption: This is some giant ragweed.

Credit: University of Illinois

Although it would seem that the logical conclusion would be to simply add anti-ragweed microbes to soil, Yannarell said that adding microbes to soil hasn't been successful in the past. An effective strategy, however, to suppress weeds might be to use plants that are known to attract the microbes that are bad for ragweed, and in so doing, encourage the growth of a microbial community that will kill it.

The study used Manhattan, Kan. (sunflower) and Urbana, Ill. (ragweed) and conducted trials independently at agricultural research facilities in Michigan, Illinois, Kansas, South Dakota, and Oregon, using local soils gathered on site. These particular weeds were selected because ragweed is a more common weed east of the Mississippi and sunflower is more common in the West.

The experiment allowed Yannarell and his colleagues to observe how three generations of ragweed and sunflower interacted with the microbial community in the soil. The plants interact with each other indirectly due to the differing effects they each have on the microbes in the soil.

"We used the same soil continuously so it had a chance to be changed," Yannarell said. "We let the plants do the manipulation."

Interestingly, they did not find the same ragweed-preferring microbe across all five states. "The microbial communities are different in each of these states, and yet we found the same overall patterns in each state individually," Yannarell said. Illinois, Oregon, Kansas, and South Dakota (and in about 50 percent of the data from Michigan) each had local microbes that preferred ragweed and had a negative effect on its growth. "That was a take-home lesson for me," he said, "that the actual organisms can be different in different locations, but they still may be performing the same functions."

Yannarell said that currently one of his graduate students is studying ways to use what they learned as a method for weed control. "What we're looking at now is the use of different cover crops, many of which are not harvested but just turned under into the soil," he said. "We're looking for specific cover crops that can make the microbial community bad for weeds as opposed to spraying. Can we create weed-suppressive soils?"

"An Affinity–Effect Relationship for Microbial Communities in Plant–Soil Feedback Loops" was published in the January 2014 issue of Microbial Biology. Others who contributed to the research are Yi Lou, Sharon A. Clay, Adam S. Davis, Anita Dille, Joel Felix, Analiza H.M. Ramirez, and Christy L. Sprague.

Debra Levey Larson | EurekAlert!
Further information:

Further reports about: Agricultural Dakota Environmental crops microbes microbial soils sunflower weeds

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>