Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSB researcher explores relationship between landscape simplification and insecticide use

A new UCSB study that analyzed U.S. Department of Agriculture (USDA) Census of Agriculture data spanning two decades (1987-2007) shows that the statistical magnitude, existence, and direction of the relationship between landscape simplification –– a term used for the conversion of natural habitat to cropland –– and insecticide use varies enormously year to year.

While there was a positive relationship in 2007 –– more simplified landscapes received more insecticides –– it is absent or reversed in all previous years. The findings were published in the Proceedings of the National Academy of Science (PNAS).

The author, Ashley E. Larsen, a Ph.D. candidate in the Department of Ecology, Evolution and Marine Biology, built on an earlier study published in PNAS by extending the temporal dimension of that analysis. That study found a strong positive relationship between landscape simplification and insecticide use when examining 2007 data for seven midwestern states. Larsen's results also showed 2007 was positive, with increased land area in cropland leading to increased cropland treated with insecticides. But in 2002 and 1997, there was no statistically significant relationship; 1992 was negative (increased cropland but decreased insecticides); and 1987 was generally negative, but sometimes null depending on the model specification used.

According to Larsen, the increase in agricultural production over the past four to five decades has corresponded to massive changes in land use often resulting in large scale monocultures separated by small fragments of natural land. Ecological theory suggests that these simplified landscapes should have more insect pest problems due to the lack of natural enemies and the increased size and connectivity of crop-food resources.

"There is a debate currently in ecology about what the most efficient land use policy for agricultural production is," said Larsen. "Some think that complex landscapes are better, that they have minimal effect on the environment, in which case we'd need to grow over a larger area. Others think that we should grow in a concentrated area and preserve what isn't in agricultural production. This land sparing-land sharing debate is getting a lot of attention. My study results don't support either land sharing or land sparing. They just show that we don't really understand how either of those policies will affect insecticide use."

Larsen used USDA county-level data for 1987, 1992, 1997, 2002, and 2007 as well as from the National Agricultural Statistics Service Cropland Data Layer for 2007 for the same seven Midwestern states as the earlier PNAS analysis –– covering more than 600 counties in Iowa, Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. She performed a single-year cross-sectional analysis for each year followed by a fixed effects analysis for all years together. She then compared fixed effects models with year, county, and year- and county-fixed effects. County-fixed effects control for unobserved effects, such as the soil quality unique to each county, and year effects control for year shocks, such as droughts shared by all counties in the study region.

With just county-fixed effects, the analysis showed a strong negative relationship between landscape simplification and insecticide use. When year-fixed effects were included, that relationship dropped to null. Including both year- and county-fixed effects, the relationship remained null and similar to the year-only model, indicating that year effects are very important.

"It would be very difficult to inform policy questions, such as land sparing or land sharing in terms of insecticide use, if the relationship between landscape simplification and insecticide use flip flops year to year," concluded Larsen. "These varied results make it hard to say a complex landscape is better or a simplified landscape is better. My next step would be to try to unlock what's behind that variation."

Julie Cohen | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>