Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transport Behavior of E. coli Varies Depending on Manure Source

10.03.2009
Scientists collaborate, measuring cell properties to decipher why some E. coli strains travel farther than others.

Escherichia coli is a commonly used indicator organism for detecting the presence of fecal contamination in drinking water supplies.

The importance of E. coli as an indicator organism has led to several studies looking at the transport behavior of this important microorganism in groundwater environments. Commonly only a single strain of E. coli is used in these studies, yet research has shown that a significant amount of genetic variability exists among strains of E. coli isolated from different host species and even from the same host species. If these genetic differences result in differences in cell properties that affect transport, different strains of E. coli may exhibit different rates of transport in the environment.

A scientist at the USDA-ARS Animal Waste Management Research Unit in Bowling Green, Kentucky, in collaboration with researchers at the University of California at Riverside, compared cell properties and transport behavior of 12 different E. coli isolates obtained from six different fecal sources. Results from this study were published in the March-April issue of Journal of Environmental Quality.

For all 12 E. coli isolates, the following cell properties known to affect bacterial transport in the environment were measured: surface charge, hydrophobicity, cell size and shape, and the composition of the extracellular polymeric substance. Transport behavior of the E. coli isolates was assessed by measuring the amount of cells that were able to pass through columns packed with clean aquifer sands. The measured breakthrough concentrations of the bacteria were then modeled so that transport parameters for each E. coli isolate could be estimated. Correlations between measured cell properties and transport parameters were investigated.

Although each E. coli isolate was subjected to the exact same storage and growth conditions, the researchers observed a large range in measured cell properties, bacterial recovery, and fitted transport parameters for the different isolates. For example, cell hydrophobicity and surface charge were observed to vary by over an order of magnitude for the 12 different E. coli isolates. The total amount of bacteria passing through the sand columns ranged from less than 2% for one of the horse isolates to 95% for one of the beef cattle isolates and the fitted model parameters ranged by a factor of 50 for the different E. coli isolates. The only cell property observed to be statistically correlated with transport behavior of the E. coli isolates was cell width.

Carl Bolster, the lead scientist on the study, stated “This diversity in transport behavior must be taken into account when making assessments of the suitability of using E. coli as an indicator organism for specific pathogenic microorganisms in groundwater. In addition, our results suggest that the modeling of E. coli in the environment will likely require a distribution of bacterial attachment rates, even when modeling E. coli movement from a single fecal source.”

Research is ongoing at USDA-ARS and UC Riverside to investigate the range in diversity in cell properties and transport behavior of E. coli under a variety of different experimental conditions; these include different growth conditions and types of sediment. Further research is needed to identify cell properties controlling E. coli transport in the environment.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | EurekAlert!
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>