Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tools That Will Help Reduce Nitrogen Pollution

14.09.2011
A U.S. Department of Agriculture (USDA) soil scientist in Colorado is helping farmers grow crops with less nitrogen-based fertilizer.

The fertilizers are a major reason why agriculture is a significant source of both greenhouse gas emissions and pollution in estuaries like the Gulf of Mexico and the Chesapeake Bay. If growers apply too little fertilizer, it reduces crop yields. But if they apply too much, the excess can be released into the atmosphere as nitrous oxide or leach into waterways as nitrate.

Jorge Delgado, with the Agricultural Research Service (ARS) Soil Plant Nutrient Research Unit in Fort Collins, Colo., conducts research to help growers determine exactly how much nitrogen to apply to a field, when to apply it and what alternatives might work best. The right approach can vary from one location to the next and one crop to the next.

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priorities of responding to climate change and promoting agricultural sustainability.

Delgado helped develop a tool designed for fledgling "environmental trading" credit programs that reward growers for reducing nitrogen losses. Known as the "Nitrogen Trading Tool" (NTT), it can be used to determine how much a proposed management practice may be able to reduce nitrogen losses, and how much "trading credit" could be earned by switching to it.

The concept of trading nitrogen credits is in its formative stages, but efforts have been established in Pennsylvania and Ohio, with municipalities and state environmental agencies in several states and watersheds studying the concept.

Delgado has distributed the NTT and other tools to hundreds of users, including farmers, agribusinesses, scientists, extension agents, state and federal agencies and international users. He also has used them to convince growers to improve soil-management practices by using conservation tillage, crop rotation and cover crops such as wheat, rye and other grasses. Such practices not only prevent nitrates from leaching into waterways, but prevent soils from eroding and keep carbon and nutrients sequestered in the soil.

Delgado also has published a peer-reviewed report in Advances in Agronomy showing how the NTT may be used to calculate the potential for nitrogen trading on a Virginia no-till operation, an Ohio farm where manure is applied, and irrigated barley and potato fields in Colorado. His efforts to reduce nitrogen losses in Mexico also have been published in the journal Terra Latinoamerica.

Read more about this research in the September 2011 issue of Agricultural Research magazine.

Dennis O'Brien | EurekAlert!
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>