Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tools That Will Help Reduce Nitrogen Pollution

A U.S. Department of Agriculture (USDA) soil scientist in Colorado is helping farmers grow crops with less nitrogen-based fertilizer.

The fertilizers are a major reason why agriculture is a significant source of both greenhouse gas emissions and pollution in estuaries like the Gulf of Mexico and the Chesapeake Bay. If growers apply too little fertilizer, it reduces crop yields. But if they apply too much, the excess can be released into the atmosphere as nitrous oxide or leach into waterways as nitrate.

Jorge Delgado, with the Agricultural Research Service (ARS) Soil Plant Nutrient Research Unit in Fort Collins, Colo., conducts research to help growers determine exactly how much nitrogen to apply to a field, when to apply it and what alternatives might work best. The right approach can vary from one location to the next and one crop to the next.

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priorities of responding to climate change and promoting agricultural sustainability.

Delgado helped develop a tool designed for fledgling "environmental trading" credit programs that reward growers for reducing nitrogen losses. Known as the "Nitrogen Trading Tool" (NTT), it can be used to determine how much a proposed management practice may be able to reduce nitrogen losses, and how much "trading credit" could be earned by switching to it.

The concept of trading nitrogen credits is in its formative stages, but efforts have been established in Pennsylvania and Ohio, with municipalities and state environmental agencies in several states and watersheds studying the concept.

Delgado has distributed the NTT and other tools to hundreds of users, including farmers, agribusinesses, scientists, extension agents, state and federal agencies and international users. He also has used them to convince growers to improve soil-management practices by using conservation tillage, crop rotation and cover crops such as wheat, rye and other grasses. Such practices not only prevent nitrates from leaching into waterways, but prevent soils from eroding and keep carbon and nutrients sequestered in the soil.

Delgado also has published a peer-reviewed report in Advances in Agronomy showing how the NTT may be used to calculate the potential for nitrogen trading on a Virginia no-till operation, an Ohio farm where manure is applied, and irrigated barley and potato fields in Colorado. His efforts to reduce nitrogen losses in Mexico also have been published in the journal Terra Latinoamerica.

Read more about this research in the September 2011 issue of Agricultural Research magazine.

Dennis O'Brien | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>