Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technology improves greenhouse, plant microclimates

Canadian study confirms advantages of retractable liquid foam system

A study in HortTechnology featured a new technology that improved greenhouse climates by reducing solar heat radiation and temperatures during the hot summer season.

The study, published by a team of Canadian researchers, was the first investigation into the effects of application of the liquid foam technology as a shading method. Results showed that the technology improved greenhouse and plant microclimates and decreased air temperature more than conventional shading curtains traditionally used by greenhouse growers.

Excess temperature, solar radiation, and high vapor pressure deficit are major greenhouse concerns during the summer season. These extreme conditions increase plant stress and decrease crop productivity and fruit quality. Methods such as cooling pads and fogging systems have been used to prevent plant heat stress during the day, and various shading techniques are often used by growers to decrease solar radiation and reduce air and leaf temperatures. Shade cloths reduce the amount of solar energy entering the greenhouse and consequently decreased air temperature by partially cutting the heat portion of the solar radiation, but this incoming energy usually contains more than 50% heat (infrared radiation), which is not useful for plant growth in the summer.

Sunarc of Canada, Inc. developed an innovative new shading technology that generates retractable liquid foam and distributes it between two layers of polyethylene film used as a greenhouse covering material. The Canadian research team set out to determine the effects of different shading strategies using the liquid foam technology on greenhouse and plant microclimates. The research was conducted over 2 years in two different areas of Canada, where experimental greenhouses were retrofitted with the new technology. Tomato and sweet pepper plants were used with two shading strategies: a conventional nonmovable shading curtain compared to the liquid foam shading system based only on outside global solar radiation, and foam shading applications based on both outside global solar radiation and greenhouse air temperature. The team recorded data on the greenhouse microclimate (global solar radiation, air temperature, and relative humidity), the canopy microclimate (leaf and bottom fruit temperatures), and ventilation (opening/closing).

"This study showed that the retractable liquid foam technology improved greenhouse climate", noted Kamal Aberkani, lead author of the report. "Under very sunny, very hot conditions, a difference of up to 6 ºC in air temperature was noted between the unshaded and shaded greenhouses as a result of liquid foam application at 40-65% shading."

According to the report, additional benefits of the technology included an increase of up to 12% in greenhouse relative humidity, a decrease in the frequency of roof ventilation operation, and an increase in the length of time bottom fruit temperature remained cool after shading ended.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

Michael W. Neff | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>