Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves greenhouse, plant microclimates

30.12.2010
Canadian study confirms advantages of retractable liquid foam system

A study in HortTechnology featured a new technology that improved greenhouse climates by reducing solar heat radiation and temperatures during the hot summer season.

The study, published by a team of Canadian researchers, was the first investigation into the effects of application of the liquid foam technology as a shading method. Results showed that the technology improved greenhouse and plant microclimates and decreased air temperature more than conventional shading curtains traditionally used by greenhouse growers.

Excess temperature, solar radiation, and high vapor pressure deficit are major greenhouse concerns during the summer season. These extreme conditions increase plant stress and decrease crop productivity and fruit quality. Methods such as cooling pads and fogging systems have been used to prevent plant heat stress during the day, and various shading techniques are often used by growers to decrease solar radiation and reduce air and leaf temperatures. Shade cloths reduce the amount of solar energy entering the greenhouse and consequently decreased air temperature by partially cutting the heat portion of the solar radiation, but this incoming energy usually contains more than 50% heat (infrared radiation), which is not useful for plant growth in the summer.

Sunarc of Canada, Inc. developed an innovative new shading technology that generates retractable liquid foam and distributes it between two layers of polyethylene film used as a greenhouse covering material. The Canadian research team set out to determine the effects of different shading strategies using the liquid foam technology on greenhouse and plant microclimates. The research was conducted over 2 years in two different areas of Canada, where experimental greenhouses were retrofitted with the new technology. Tomato and sweet pepper plants were used with two shading strategies: a conventional nonmovable shading curtain compared to the liquid foam shading system based only on outside global solar radiation, and foam shading applications based on both outside global solar radiation and greenhouse air temperature. The team recorded data on the greenhouse microclimate (global solar radiation, air temperature, and relative humidity), the canopy microclimate (leaf and bottom fruit temperatures), and ventilation (opening/closing).

"This study showed that the retractable liquid foam technology improved greenhouse climate", noted Kamal Aberkani, lead author of the report. "Under very sunny, very hot conditions, a difference of up to 6 ºC in air temperature was noted between the unshaded and shaded greenhouses as a result of liquid foam application at 40-65% shading."

According to the report, additional benefits of the technology included an increase of up to 12% in greenhouse relative humidity, a decrease in the frequency of roof ventilation operation, and an increase in the length of time bottom fruit temperature remained cool after shading ended.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/20/2/283

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>