Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet corn story begins in UW-Madison lab

23.11.2009
This week, scientists are revealing the genetic instructions inside corn, one of the big three cereal crops. Corn, or maize, has one of the most complex sequences of DNA ever analyzed, says University of Wisconsin-Madison genomicist David Schwartz, who was one of more than 100 authors in the article in the journal Science.

"The maize genome is a true maze — full of confusing repeats and dead-ends that have troubled would-be sequencers for years," says Schwartz.

Publication of the genome is expected to advance knowledge of corn's ancestry, and also guide breeders trying to extract even more productivity from a crop that is expected to produce more than 200 million tons of grain from more than 87 million acres in the United States this year.

Producing the genome sequence required input from a unique optical mapping facility in the Laboratory for Molecular and Computational Genomics at UW-Madison.

Unlike traditional gene sequencers, who examine DNA letter by letter, the optical mapping system looks at bigger pieces, and that has positioned the lab's research as a key complementary component for working with the data produced by gene sequencers.

The first step in optical mapping system is to stretch out long, string-like DNA molecules and stick them to electrically charged glass plates. These molecules are sliced up into a series of consecutive chunks, marking them in the same way as a grocery bar code, and then painted with a fluorescent dye.

When the bar-coded molecules are exposed to a blue laser, the amount of fluorescent light they emit reveals the length of each barcode feature. The microscopes in the optical mapping system are fully automated, so millions of bar-coded molecules can be pieced together to reveal the structure of a genome.

The optical map supplies a scaffold, or big-picture view, of the structure of the DNA under study, says Schwartz. "Traditional sequencing must work on small chunks at a time, but the maize genome is incredibly complex, full of repeats, and that's confusing. It's like buying a 10,000-piece jigsaw puzzle; from looking at one piece, it's hard to know if you are looking at the dwarf's foot, or Snow White's face. Our optical maps, just like the box cover, give the big picture that allows the sequencers to link up their smaller pieces into a complete genome."

Shiguo Zhou, Schwartz's colleague who did much of the heavy lifting in the optical map of maize, says the optical mapping system was "incredibly cost-effective and invaluable in dissecting the infamously complex maize genome."

Zhou and Schwartz were the principal authors of a companion article in PLoS Genetics, which explained how they made the optical map of corn.

At the center of the Schwartz system is a series of automated microscopes that run 24 hours a day, seven days a week. "For the maize genome, we looked at about 2 million molecules. If you had to do that by hand, hunched over a microscope, you would grow dizzy from boredom," says Schwartz.

Once the optical information is obtained, it is correlated with the letter-by-letter information coming from the gene sequencers. That statistic-intensive process is handled by hundreds of networked computers, running software that were created by Schwartz's collaborators Michael Waterman and his student, John Nguyen, and enabled to run on Miron Livny's computer cluster in the department of computer sciences.

"The maize optical map is by far the most complex example of genome analysis via single molecules," says Schwartz, who with Zhou recently mapped the plant disease that caused the deadly Irish potato blight, and continues to affect potato and tomato farmers today. "It was created using completely new techniques which greatly surpass conventional sequencing and all available next-generation sequencing methods and platforms in terms of completeness, speed, accuracy and cost."

Scientists say the speed-ups and cost reductions now affecting DNA analysis are akin to those once seen in the computer industry, and it is only a matter of time before it's routine to analyze an individual case of cancer. Because cancer has so many genetic variations, such analyses will likely lead to a period of "personalized medicine" in which the treatment is matched to the genetic makeup of a particular tumor, not by the averaged response gathered from broad-based studies.

"The maps we make tell us a lot about us, touch the food we eat, and the organisms that can make you sick," says Schwartz. "I believe this system is going to help deliver cost-effective personal genomics, and that will allow more effective diagnosis, earlier detection of cancer, and unclog the pipelines for new drugs. This work points the way toward new tools for exploring personal genomics."

Dave Tenenbaum, 608-265-8549, djtenenb@wisc.edu

David C. Schwartz | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: DNA DNA molecule UW-Madison genetic variation maize genome single molecule sweet

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>