Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet corn story begins in UW-Madison lab

23.11.2009
This week, scientists are revealing the genetic instructions inside corn, one of the big three cereal crops. Corn, or maize, has one of the most complex sequences of DNA ever analyzed, says University of Wisconsin-Madison genomicist David Schwartz, who was one of more than 100 authors in the article in the journal Science.

"The maize genome is a true maze — full of confusing repeats and dead-ends that have troubled would-be sequencers for years," says Schwartz.

Publication of the genome is expected to advance knowledge of corn's ancestry, and also guide breeders trying to extract even more productivity from a crop that is expected to produce more than 200 million tons of grain from more than 87 million acres in the United States this year.

Producing the genome sequence required input from a unique optical mapping facility in the Laboratory for Molecular and Computational Genomics at UW-Madison.

Unlike traditional gene sequencers, who examine DNA letter by letter, the optical mapping system looks at bigger pieces, and that has positioned the lab's research as a key complementary component for working with the data produced by gene sequencers.

The first step in optical mapping system is to stretch out long, string-like DNA molecules and stick them to electrically charged glass plates. These molecules are sliced up into a series of consecutive chunks, marking them in the same way as a grocery bar code, and then painted with a fluorescent dye.

When the bar-coded molecules are exposed to a blue laser, the amount of fluorescent light they emit reveals the length of each barcode feature. The microscopes in the optical mapping system are fully automated, so millions of bar-coded molecules can be pieced together to reveal the structure of a genome.

The optical map supplies a scaffold, or big-picture view, of the structure of the DNA under study, says Schwartz. "Traditional sequencing must work on small chunks at a time, but the maize genome is incredibly complex, full of repeats, and that's confusing. It's like buying a 10,000-piece jigsaw puzzle; from looking at one piece, it's hard to know if you are looking at the dwarf's foot, or Snow White's face. Our optical maps, just like the box cover, give the big picture that allows the sequencers to link up their smaller pieces into a complete genome."

Shiguo Zhou, Schwartz's colleague who did much of the heavy lifting in the optical map of maize, says the optical mapping system was "incredibly cost-effective and invaluable in dissecting the infamously complex maize genome."

Zhou and Schwartz were the principal authors of a companion article in PLoS Genetics, which explained how they made the optical map of corn.

At the center of the Schwartz system is a series of automated microscopes that run 24 hours a day, seven days a week. "For the maize genome, we looked at about 2 million molecules. If you had to do that by hand, hunched over a microscope, you would grow dizzy from boredom," says Schwartz.

Once the optical information is obtained, it is correlated with the letter-by-letter information coming from the gene sequencers. That statistic-intensive process is handled by hundreds of networked computers, running software that were created by Schwartz's collaborators Michael Waterman and his student, John Nguyen, and enabled to run on Miron Livny's computer cluster in the department of computer sciences.

"The maize optical map is by far the most complex example of genome analysis via single molecules," says Schwartz, who with Zhou recently mapped the plant disease that caused the deadly Irish potato blight, and continues to affect potato and tomato farmers today. "It was created using completely new techniques which greatly surpass conventional sequencing and all available next-generation sequencing methods and platforms in terms of completeness, speed, accuracy and cost."

Scientists say the speed-ups and cost reductions now affecting DNA analysis are akin to those once seen in the computer industry, and it is only a matter of time before it's routine to analyze an individual case of cancer. Because cancer has so many genetic variations, such analyses will likely lead to a period of "personalized medicine" in which the treatment is matched to the genetic makeup of a particular tumor, not by the averaged response gathered from broad-based studies.

"The maps we make tell us a lot about us, touch the food we eat, and the organisms that can make you sick," says Schwartz. "I believe this system is going to help deliver cost-effective personal genomics, and that will allow more effective diagnosis, earlier detection of cancer, and unclog the pipelines for new drugs. This work points the way toward new tools for exploring personal genomics."

Dave Tenenbaum, 608-265-8549, djtenenb@wisc.edu

David C. Schwartz | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: DNA DNA molecule UW-Madison genetic variation maize genome single molecule sweet

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>