Sowing a future for peas

“While many compounds have been reported to change in laboratory based drought stress experiments, few have identified how such compounds change in crops under field conditions,” says Dr Claire Domoney of the John Innes Centre.

The researchers used NMR spectroscopy to produce a profile of the levels of all the different small molecules or metabolites in pea plant leaves. This profile, known as the metabolome, was then compared with that from plants subjected to controlled drought stress. The study found several key plant metabolites increased under drought stress, some of which had not previously been shown to be involved.

Less water, especially at critical times in the growing season, means lower yield and quality. This new information could be used to identify varieties of pea and other pulse crops that are more tolerant to changes in water availability.

Drought stress also induced changes in compounds that could have an impact on taste and flavour. Changes in climate are likely to alter the characteristics of commercial crops and could possibly affect their value. Peas and other legumes make a valuable contribution to sustainable food production by fixing nitrogen in the soil for the next crop, reducing the need for nitrogen fertilizer.

Media Contact

Zoe Dunford alfa

More Information:

http://www.jic.ac.uk

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors