Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Soil Carbon Storage is Not Always Influenced by Tillage Practices

Although moldboard plowing combined with mineral N fertilization can lead to decreased organic carbon stocks in the soil surface relative to no-till, this effect is cancelled when the whole profile is considered.

The practice of no-till has increased considerably during the past 20 yr. Soils under no-till usually host a more abundant and diverse biota and are less prone to erosion, water loss, and structural breakdown than tilled soils.

Their organic matter content is also often increased and consequently, no-till is proposed as a measure to mitigate the increase in atmospheric carbon dioxide concentration. However, recent studies show that the effect of no-till on carbon sequestration can be variable depending on soil and climatic conditions, and nutrient management practices.

Researchers at Agriculture and Agri-Food Canada (Québec City) investigated the impacts of tillage (no-till vs. moldboard plowing) and N and P fertilization on carbon storage in a clay loam soil under cool and humid conditions in eastern Canada. Corn and soybean had been grown in a yearly rotation for 14 yr. The results of the study were reported in the 2009 January-February issue of the Soil Science Society of America Journal.

The authors concluded that their investigation indicates “…no-till enhanced soil organic carbon (SOC) content in the soil surface layer, but moldboard plowing resulted in greater SOC content near the bottom of the plow layer. When the entire soil profile (0-60 cm) was considered, both effects compensated each other which resulted in statistically equivalent SOC stocks for both tillage practices”.

The effects of tillage and N fertilization varied depending on the soil depth considered. When considering only the top 20 cm of soil, the lowest C stocks were measured in the plowed soil with the highest N fertilizer level, whereas the highest SOC stocks were observed in the NT treatment with the highest N rate. The authors hypothesized that while N fertilization favored a greater residue accumulation in the top 20 cm of no-till soils, mixing of crop residue with soil particles and N fertilizer by tillage stimulated the mineralization of residue and native soil carbon. However, when accounting for the whole soil profile, these variations in the surface 20 cm of soil were counterbalanced by significant SOC accumulation in the 20- to 30-cm soil layer of tilled soils, resulting in statistically equivalent SOC stocks for all tillage and N treatments. This study further emphasizes the importance of taking into account the whole soil profile when determining management effects on SOC storage, especially when full-inversion tillage is involved. The authors conclude that “only considering the top 20 cm of soil would have led us to an erroneous evaluation of the interactive effects of tillage and N fertilization on SOC stock”.

Field studies of the impact of tillage and fertilization on carbon storage have yielded contrasting results in various parts of the world. An explanation of the high intersite variability of the influence of no-till on soil carbon storage will require that we understand the impacts of no-till and fertilizer management on SOC sequestration for various soil and climatic conditions. Further, researchers at Agriculture and Agri-Food Canada are pursuing their investigations to understand the factors that control the accumulation of soil carbon at depth under moldboard plowing. Specifically, they now focus their efforts on the role of clay particles and soil aggregation in stabilizing carbon.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

Soil Science Society of America Journal,, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>