Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Discover Genetic Basis of Pest Resistance to Biotech Cotton


An international team led by scientists at the University of Arizona and the U.S. Department of Agriculture has discovered what happens on a molecular basis in insects that evolved resistance to genetically engineered cotton plants.

The findings, reported in the May 19 issue of the journal PLOS ONE, shed light on how the global caterpillar pest called pink bollworm overcomes biotech cotton, which was designed to make an insect-killing bacterial protein called Bt toxin.  The results could have major impacts for managing pest resistance to Bt crops. 

"Bt crops have had major benefits for society," said Jeffrey Fabrick, the lead author of the study and a research entomologist at the USDA Agricultural Research Service in Maricopa, Arizona. "By understanding how insects adapt to Bt crops we can devise better strategies to delay the evolution of resistance and extend these benefits." 

"Many mechanisms of resistance to Bt proteins have been proposed and studied in the lab, but this is the first analysis of the molecular genetic basis of severe pest resistance to a Bt crop in the field," said Bruce Tabashnik, one of the paper's authors and the head of the Department of Entomology in the UA College of Agriculture and Life Sciences. He also is a member of the UA's BIO5 Institute. 

Based on laboratory experiments aimed at determining the molecular mechanisms involved, scientists knew that pink bollworm could evolve resistance against the Bt toxin, but they had to go all the way to India to observe this happening in the field.

Farmers in the U.S., but not in India, adopted tactics designed to slow evolution of resistance in pink bollworm. Scientists from the UA and the USDA worked closely with cotton growers in Arizona to develop and implement resistance management strategies such as providing "refuges" of standard cotton plants that do not produce Bt proteins and releasing sterile pink bollworm moths. Planting refuges near Bt crops allows susceptible insects to survive and reproduce and thus reduces the chances that two resistant insects will mate with each other and produce resistant offspring. Similarly, mass release of sterile moths also makes it less likely for two resistant individuals to encounter each other and mate.

As a result, pink bollworm has been all but eradicated in the southwestern U.S.  Suppression of this pest with Bt cotton is the cornerstone of an integrated pest management program that has allowed Arizona cotton growers to reduce broad spectrum insecticide use by 80 percent, saving them over $10 million annually. 

In India, however, resistant pink bollworm populations have emerged. 

Crops genetically engineered to produce proteins from the bacterium Bacillus thuringiensis – or Bt – were introduced in 1996 and planted on more than 180 million acres worldwide during 2013. Organic growers have used Bt proteins in sprays for decades because they kill certain pests but are not toxic to people and most other organisms. Pest control with Bt proteins – either in sprays or genetically engineered crops – reduces reliance on chemical insecticides. Although Bt proteins provide environmental and economic benefits, these benefits are cut short when pests evolve resistance. 

By sequencing the DNA of resistant pink bollworm collected from the field in India – which grows the most Bt cotton of any country in the world – the team found that the insects produce remarkably diverse disrupted variants of a protein called cadherin. Mutations that disrupt cadherin prevent Bt toxin from binding to it, which leaves the insect unscathed by the Bt toxin. The researchers learned that the astonishing diversity of cadherin in pink bollworm from India is caused by alternative splicing, a novel mechanism of resistance that allows a single DNA sequence to code for many variants of a protein. 

"Our findings represent the first example of alternative splicing associated with Bt resistance that evolved in the field," said Fabrick, who is also an adjunct scientist in the Department of Entomology at the UA.  

Mario Soberón, a Bt expert at the Universidad Nacional Autónoma de México in Cuernavaca, who was not an author of the study, commented, "This is a neat example of the diverse mechanisms insect possess to evolve resistance. An important implication is that DNA screening would not be efficient for monitoring resistance of pink bollworm to Bt toxins."


Bruce Tabashnik

UA College of Agriculture and Life Sciences

Jeffrey Fabrick 

U.S. Department of Agriculture

UANews Contact 

Daniel Stolte



Research paper: 

UA College of Agriculture and Life Sciences:   

BIO5 Institute:

Daniel Stolte | University of Arizona

Further reports about: Arizona Biotech DNA Genetic Life Pest cadherin cotton crops evolve insects proteins resistance variants

More articles from Agricultural and Forestry Science:

nachricht Covering the bases with cover crops
01.10.2015 | American Society of Agronomy

nachricht Innovative seeding machine to speed up kenaf planting
23.09.2015 | Universiti Putra Malaysia (UPM)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>