Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Genetic Basis of Pest Resistance to Biotech Cotton

20.05.2014

An international team led by scientists at the University of Arizona and the U.S. Department of Agriculture has discovered what happens on a molecular basis in insects that evolved resistance to genetically engineered cotton plants.

The findings, reported in the May 19 issue of the journal PLOS ONE, shed light on how the global caterpillar pest called pink bollworm overcomes biotech cotton, which was designed to make an insect-killing bacterial protein called Bt toxin.  The results could have major impacts for managing pest resistance to Bt crops. 

"Bt crops have had major benefits for society," said Jeffrey Fabrick, the lead author of the study and a research entomologist at the USDA Agricultural Research Service in Maricopa, Arizona. "By understanding how insects adapt to Bt crops we can devise better strategies to delay the evolution of resistance and extend these benefits." 

"Many mechanisms of resistance to Bt proteins have been proposed and studied in the lab, but this is the first analysis of the molecular genetic basis of severe pest resistance to a Bt crop in the field," said Bruce Tabashnik, one of the paper's authors and the head of the Department of Entomology in the UA College of Agriculture and Life Sciences. He also is a member of the UA's BIO5 Institute. 

Based on laboratory experiments aimed at determining the molecular mechanisms involved, scientists knew that pink bollworm could evolve resistance against the Bt toxin, but they had to go all the way to India to observe this happening in the field.

Farmers in the U.S., but not in India, adopted tactics designed to slow evolution of resistance in pink bollworm. Scientists from the UA and the USDA worked closely with cotton growers in Arizona to develop and implement resistance management strategies such as providing "refuges" of standard cotton plants that do not produce Bt proteins and releasing sterile pink bollworm moths. Planting refuges near Bt crops allows susceptible insects to survive and reproduce and thus reduces the chances that two resistant insects will mate with each other and produce resistant offspring. Similarly, mass release of sterile moths also makes it less likely for two resistant individuals to encounter each other and mate.

As a result, pink bollworm has been all but eradicated in the southwestern U.S.  Suppression of this pest with Bt cotton is the cornerstone of an integrated pest management program that has allowed Arizona cotton growers to reduce broad spectrum insecticide use by 80 percent, saving them over $10 million annually. 

In India, however, resistant pink bollworm populations have emerged. 

Crops genetically engineered to produce proteins from the bacterium Bacillus thuringiensis – or Bt – were introduced in 1996 and planted on more than 180 million acres worldwide during 2013. Organic growers have used Bt proteins in sprays for decades because they kill certain pests but are not toxic to people and most other organisms. Pest control with Bt proteins – either in sprays or genetically engineered crops – reduces reliance on chemical insecticides. Although Bt proteins provide environmental and economic benefits, these benefits are cut short when pests evolve resistance. 

By sequencing the DNA of resistant pink bollworm collected from the field in India – which grows the most Bt cotton of any country in the world – the team found that the insects produce remarkably diverse disrupted variants of a protein called cadherin. Mutations that disrupt cadherin prevent Bt toxin from binding to it, which leaves the insect unscathed by the Bt toxin. The researchers learned that the astonishing diversity of cadherin in pink bollworm from India is caused by alternative splicing, a novel mechanism of resistance that allows a single DNA sequence to code for many variants of a protein. 

"Our findings represent the first example of alternative splicing associated with Bt resistance that evolved in the field," said Fabrick, who is also an adjunct scientist in the Department of Entomology at the UA.  

Mario Soberón, a Bt expert at the Universidad Nacional Autónoma de México in Cuernavaca, who was not an author of the study, commented, "This is a neat example of the diverse mechanisms insect possess to evolve resistance. An important implication is that DNA screening would not be efficient for monitoring resistance of pink bollworm to Bt toxins."

Contacts 

Bruce Tabashnik

UA College of Agriculture and Life Sciences

brucet@cals.arizona.edu

Jeffrey Fabrick 

U.S. Department of Agriculture

Jeff.Fabrick@ars.usda.gov

UANews Contact 

Daniel Stolte

520-626-4402

stolte@email.arizona.edu

LINKS: 

Research paper: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0097900 

UA College of Agriculture and Life Sciences: http://ag.arizona.edu   

BIO5 Institute: www.bio5.org

Daniel Stolte | University of Arizona

Further reports about: Arizona Biotech DNA Genetic Life Pest cadherin cotton crops evolve insects proteins resistance variants

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>