Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Genetic Basis of Pest Resistance to Biotech Cotton

20.05.2014

An international team led by scientists at the University of Arizona and the U.S. Department of Agriculture has discovered what happens on a molecular basis in insects that evolved resistance to genetically engineered cotton plants.

The findings, reported in the May 19 issue of the journal PLOS ONE, shed light on how the global caterpillar pest called pink bollworm overcomes biotech cotton, which was designed to make an insect-killing bacterial protein called Bt toxin.  The results could have major impacts for managing pest resistance to Bt crops. 

"Bt crops have had major benefits for society," said Jeffrey Fabrick, the lead author of the study and a research entomologist at the USDA Agricultural Research Service in Maricopa, Arizona. "By understanding how insects adapt to Bt crops we can devise better strategies to delay the evolution of resistance and extend these benefits." 

"Many mechanisms of resistance to Bt proteins have been proposed and studied in the lab, but this is the first analysis of the molecular genetic basis of severe pest resistance to a Bt crop in the field," said Bruce Tabashnik, one of the paper's authors and the head of the Department of Entomology in the UA College of Agriculture and Life Sciences. He also is a member of the UA's BIO5 Institute. 

Based on laboratory experiments aimed at determining the molecular mechanisms involved, scientists knew that pink bollworm could evolve resistance against the Bt toxin, but they had to go all the way to India to observe this happening in the field.

Farmers in the U.S., but not in India, adopted tactics designed to slow evolution of resistance in pink bollworm. Scientists from the UA and the USDA worked closely with cotton growers in Arizona to develop and implement resistance management strategies such as providing "refuges" of standard cotton plants that do not produce Bt proteins and releasing sterile pink bollworm moths. Planting refuges near Bt crops allows susceptible insects to survive and reproduce and thus reduces the chances that two resistant insects will mate with each other and produce resistant offspring. Similarly, mass release of sterile moths also makes it less likely for two resistant individuals to encounter each other and mate.

As a result, pink bollworm has been all but eradicated in the southwestern U.S.  Suppression of this pest with Bt cotton is the cornerstone of an integrated pest management program that has allowed Arizona cotton growers to reduce broad spectrum insecticide use by 80 percent, saving them over $10 million annually. 

In India, however, resistant pink bollworm populations have emerged. 

Crops genetically engineered to produce proteins from the bacterium Bacillus thuringiensis – or Bt – were introduced in 1996 and planted on more than 180 million acres worldwide during 2013. Organic growers have used Bt proteins in sprays for decades because they kill certain pests but are not toxic to people and most other organisms. Pest control with Bt proteins – either in sprays or genetically engineered crops – reduces reliance on chemical insecticides. Although Bt proteins provide environmental and economic benefits, these benefits are cut short when pests evolve resistance. 

By sequencing the DNA of resistant pink bollworm collected from the field in India – which grows the most Bt cotton of any country in the world – the team found that the insects produce remarkably diverse disrupted variants of a protein called cadherin. Mutations that disrupt cadherin prevent Bt toxin from binding to it, which leaves the insect unscathed by the Bt toxin. The researchers learned that the astonishing diversity of cadherin in pink bollworm from India is caused by alternative splicing, a novel mechanism of resistance that allows a single DNA sequence to code for many variants of a protein. 

"Our findings represent the first example of alternative splicing associated with Bt resistance that evolved in the field," said Fabrick, who is also an adjunct scientist in the Department of Entomology at the UA.  

Mario Soberón, a Bt expert at the Universidad Nacional Autónoma de México in Cuernavaca, who was not an author of the study, commented, "This is a neat example of the diverse mechanisms insect possess to evolve resistance. An important implication is that DNA screening would not be efficient for monitoring resistance of pink bollworm to Bt toxins."

Contacts 

Bruce Tabashnik

UA College of Agriculture and Life Sciences

brucet@cals.arizona.edu

Jeffrey Fabrick 

U.S. Department of Agriculture

Jeff.Fabrick@ars.usda.gov

UANews Contact 

Daniel Stolte

520-626-4402

stolte@email.arizona.edu

LINKS: 

Research paper: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0097900 

UA College of Agriculture and Life Sciences: http://ag.arizona.edu   

BIO5 Institute: www.bio5.org

Daniel Stolte | University of Arizona

Further reports about: Arizona Biotech DNA Genetic Life Pest cadherin cotton crops evolve insects proteins resistance variants

More articles from Agricultural and Forestry Science:

nachricht How algae could save plants from themselves
11.05.2016 | Carnegie Institution for Science

nachricht Biofeedback system designed to control photosynthetic lighting
10.05.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>