Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving wheat crops worldwide

26.02.2009
CSIRO Plant Industry scientists and international collaborators have discovered the key to overcoming three major cereal diseases, which in epidemic years cost wheat growers worldwide in excess of AUS$7.8 billion.

In a paper published today in the prestigious journal Science, scientists from CSIRO Plant Industry, the University of Zurich and the International Maize and Wheat Improvement Center have identified a wheat gene sequence which provides protection against leaf rust, stripe rust and powdery mildew.

“Genetic disease resistance is highly desirable in plants as it is more environmentally friendly and profitable than strategies like spraying pesticides,” says a senior principal research scientist at CSIRO Plant Industry, Dr Evans Lagudah. “The newly identified resistance gene product – known as Lr34 transporter protein – is the first of its kind to be found in a commercial crop that is capable of delivering broad-spectrum control of multiple pathogens.”

Lr34 has two extremely valuable characteristics. Whereas one gene usually only protects against a single disease for a limited time under commercial production, Lr34 provides long lasting disease resistance and acts against multiple diseases.

“Genetic disease resistance is highly desirable in plants as it is more environmentally friendly and profitable than strategies like spraying pesticides,” says a senior principal research scientist at CSIRO Plant Industry, Dr Evans Lagudah.“The fungi that cause rust diseases are very adaptable and can rapidly evolve to overcome resistant cereal varieties,” Dr Lagudah says. “Scientists and farmers can commonly only respond to a rust outbreak after it has passed, but tests conducted after identifying the Lr34 gene sequence show it has provided partial but constant protection against leaf rust for over 80 years.”

Understanding the molecular nature of this type of resistance has important implications for long-term control of rust diseases.

CSIRO Plant Industry’s Dr Wolfgang Spielmeyer says an immediate application is the use of the gene sequence to directly select and breed wheat plants that carry the resistance against multiple pathogens.

“The Lr34 gene can now be combined with other disease resistance genes into single cultivars faster and with greater confidence providing even more durable resistance,” he says.

This work was supported in Australia by the Grains Research and Development Corporation.

Kylie Foster | EurekAlert!
Further information:
http://www.csiro.au

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>