Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers: Sorghum Should Be in the Biofuel Crop Mix

21.06.2012
Sweet and biomass sorghum would meet the need for next-generation biofuels to be environmentally sustainable, easily adopted by producers and take advantage of existing agricultural infrastructure, a group of researchers led by Purdue University scientists believes.

The scientists from Purdue, the University of Nebraska-Lincoln, University of Illinois and Cornell University believe sorghum, a grain crop similar to corn, could benefit from the rail system, grain elevators and corn ethanol processing facilities already in place. Their perspective article is published early online in the journal Biofuels, Bioproducts & Biorefining.

"The Midwest is uniquely poised to get the biorefining industry going on cellulose," said Nick Carpita, a Purdue professor of botany and plant pathology. "As we move to different fuels beyond ethanol, the ethanol plants of today are equipped to take advantage of new bioenergy crops."

The scientists argue that no single plant is a silver-bullet answer to biofuels, but sorghum should be a larger part of the conversation than it is today. Cliff Weil, a Purdue professor of agronomy, said some types of sorghum would require fewer inputs and could be grown on marginal lands.

"In the near future, we need a feedstock that is not corn," Weil said. "Sweet and biomass sorghum meet all the criteria. They use less nitrogen, grow well and grow where other things don't grow."

The ability to minimize inputs such as nitrogen could be a key to sorghum's benefits as a bioenergy crop. Carpita said corn, which has been bred to produce a maximum amount of seed, requires a lot of nitrogen. But sorghum could be genetically developed in a way that maximizes cellulose, minimizes seeds and, therefore, minimizes inputs.

"If you're just producing biomass and not seed, you don't need as much nitrogen," Carpita said.

Farmers may also be more willing to grow sorghum - a crop they're familiar with - because it is an annual, compared with perennials such as switchgrass or Miscanthus, that would take up a field for a decade or longer. Sorghum would fit in a normal crop rotation with food crops rather than tying up valuable cropland.

"If we're talking about planting switchgrass, that's a 15-year commitment," said Nathan Mosier, a Purdue associate professor of agricultural and biological engineering. "You can't switch annually based on the economy or other factors. You are committed to that crop."

Conversion processes for turning biomass into fuel need to be scalable and take advantage of existing infrastructure for grain production, said Maureen McCann, a Purdue professor of biology and director of the Energy Center and the Center for Direct Catalytic Conversion of Biomass to Biofuels. Sorghum could be harvested and transported using existing rail lines to collection points such as grain elevators, where the crop could be processed to a higher-value, more energy-dense product before being transported for further processing in a refinery.

"Biomass has roughly half the energy content of gasoline - even if it's very compressed and tightly packed. The issue is really how to increase the intrinsic energy density by preprocessing conversion steps that could be done on farm or at the silo so that you're transporting higher-energy products to the refineries," McCann said.

Farzad Taheripour, a Purdue research assistant professor of agricultural economics, said bringing sorghum back as a biofuel crop could have an economic impact on poorer rural areas of the country.

"Given that sorghum can be produced on low-quality, marginal lands in dry areas, producing sorghum for biofuel will significantly improve the economy of rural areas that rely on low-productivity agriculture," Taheripour said. "This could improve welfare in less-developed rural areas and increase job opportunities in these areas."

Purdue Agriculture researchers are continuing to look at how bioenergy crops could be deployed into the agricultural landscape. Work in the Center for Direct Catalytic Conversion of Biomass to Biofuels continues to develop a knowledge base for chemical and thermal conversion technologies that might be able to take advantage of the Midwest's transportation infrastructure.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Nick Carpita, 765-494-4653, carpita@purdue.edu
Cliff Weil, 765-496-1917, cweil@purdue.edu
Nathan Mosier, 765-496-2044, mosiern@purdue.edu
Maureen McCann, 765-496-1779, mmccann@purdue.edu
Farzad Taheripour, 765-494-4612, tfarzad@purdue.edu
ABSTRACT
Envisioning the Transition to a Next-Generation Biofuels Industry in the U.S. Midwest

Ismail Dweikat, Clifford Weil, Stephen Moose, Leon Kochian, Nathan Mosier, Klein Ileleji, Patrick Brown, Wendy Peer, Angus Murphy, Farzad Taheripour, Maureen McCann, Nicholas Carpita

Corn grain ethanol production is a mature industry built on a Midwestern agricultural infrastructure. Second- and third-generation biofuels and bio-based products industries could take advantage of this robust framework. Significant but not insurmountable barriers remain for grower acceptance of bioenergy crop plants and capital investment in transitioning from grain to lignocellulosic biomass at scale. The existing infrastructure in the Midwest provides a model for implementing an environmentally responsible and sustainable next-generation biofuels industry into the agro-economy.

Brian Wallheimer | Newswise Science News
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>