Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers: Sorghum Should Be in the Biofuel Crop Mix

21.06.2012
Sweet and biomass sorghum would meet the need for next-generation biofuels to be environmentally sustainable, easily adopted by producers and take advantage of existing agricultural infrastructure, a group of researchers led by Purdue University scientists believes.

The scientists from Purdue, the University of Nebraska-Lincoln, University of Illinois and Cornell University believe sorghum, a grain crop similar to corn, could benefit from the rail system, grain elevators and corn ethanol processing facilities already in place. Their perspective article is published early online in the journal Biofuels, Bioproducts & Biorefining.

"The Midwest is uniquely poised to get the biorefining industry going on cellulose," said Nick Carpita, a Purdue professor of botany and plant pathology. "As we move to different fuels beyond ethanol, the ethanol plants of today are equipped to take advantage of new bioenergy crops."

The scientists argue that no single plant is a silver-bullet answer to biofuels, but sorghum should be a larger part of the conversation than it is today. Cliff Weil, a Purdue professor of agronomy, said some types of sorghum would require fewer inputs and could be grown on marginal lands.

"In the near future, we need a feedstock that is not corn," Weil said. "Sweet and biomass sorghum meet all the criteria. They use less nitrogen, grow well and grow where other things don't grow."

The ability to minimize inputs such as nitrogen could be a key to sorghum's benefits as a bioenergy crop. Carpita said corn, which has been bred to produce a maximum amount of seed, requires a lot of nitrogen. But sorghum could be genetically developed in a way that maximizes cellulose, minimizes seeds and, therefore, minimizes inputs.

"If you're just producing biomass and not seed, you don't need as much nitrogen," Carpita said.

Farmers may also be more willing to grow sorghum - a crop they're familiar with - because it is an annual, compared with perennials such as switchgrass or Miscanthus, that would take up a field for a decade or longer. Sorghum would fit in a normal crop rotation with food crops rather than tying up valuable cropland.

"If we're talking about planting switchgrass, that's a 15-year commitment," said Nathan Mosier, a Purdue associate professor of agricultural and biological engineering. "You can't switch annually based on the economy or other factors. You are committed to that crop."

Conversion processes for turning biomass into fuel need to be scalable and take advantage of existing infrastructure for grain production, said Maureen McCann, a Purdue professor of biology and director of the Energy Center and the Center for Direct Catalytic Conversion of Biomass to Biofuels. Sorghum could be harvested and transported using existing rail lines to collection points such as grain elevators, where the crop could be processed to a higher-value, more energy-dense product before being transported for further processing in a refinery.

"Biomass has roughly half the energy content of gasoline - even if it's very compressed and tightly packed. The issue is really how to increase the intrinsic energy density by preprocessing conversion steps that could be done on farm or at the silo so that you're transporting higher-energy products to the refineries," McCann said.

Farzad Taheripour, a Purdue research assistant professor of agricultural economics, said bringing sorghum back as a biofuel crop could have an economic impact on poorer rural areas of the country.

"Given that sorghum can be produced on low-quality, marginal lands in dry areas, producing sorghum for biofuel will significantly improve the economy of rural areas that rely on low-productivity agriculture," Taheripour said. "This could improve welfare in less-developed rural areas and increase job opportunities in these areas."

Purdue Agriculture researchers are continuing to look at how bioenergy crops could be deployed into the agricultural landscape. Work in the Center for Direct Catalytic Conversion of Biomass to Biofuels continues to develop a knowledge base for chemical and thermal conversion technologies that might be able to take advantage of the Midwest's transportation infrastructure.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Nick Carpita, 765-494-4653, carpita@purdue.edu
Cliff Weil, 765-496-1917, cweil@purdue.edu
Nathan Mosier, 765-496-2044, mosiern@purdue.edu
Maureen McCann, 765-496-1779, mmccann@purdue.edu
Farzad Taheripour, 765-494-4612, tfarzad@purdue.edu
ABSTRACT
Envisioning the Transition to a Next-Generation Biofuels Industry in the U.S. Midwest

Ismail Dweikat, Clifford Weil, Stephen Moose, Leon Kochian, Nathan Mosier, Klein Ileleji, Patrick Brown, Wendy Peer, Angus Murphy, Farzad Taheripour, Maureen McCann, Nicholas Carpita

Corn grain ethanol production is a mature industry built on a Midwestern agricultural infrastructure. Second- and third-generation biofuels and bio-based products industries could take advantage of this robust framework. Significant but not insurmountable barriers remain for grower acceptance of bioenergy crop plants and capital investment in transitioning from grain to lignocellulosic biomass at scale. The existing infrastructure in the Midwest provides a model for implementing an environmentally responsible and sustainable next-generation biofuels industry into the agro-economy.

Brian Wallheimer | Newswise Science News
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>