Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers examine bacterial rice diseases, search for genetic solutions

03.04.2009
As a major food source for much of the world, rice is one of the most important plants on earth.

Keeping it safe from disease has become, in part, the task of a group of three researchers from Iowa State University and one from Kansas State University.

The researchers are looking at two bacterial diseases of rice. The most costly is bacterial blight of rice, which is caused by a bacterium called Xanthomonas oryzae pathovar oryzae, and can diminish yield by up to 50 percent.

"This is the most important bacterial disease in rice, and in some areas, it is the most important rice disease of any kind," said Adam Bogdanove, an associate professor of plant pathology who is part of the ISU research team.

The team is also studying bacterial leaf streak of rice caused by the closely related bacterium Xanthomonas oryzae pathovar oryzicola. Bacterial leaf streak is usually not as damaging as bacterial blight, but it is increasing in importance in many areas of the world, particularly Southeast Asia.

These bacteria damage rice by entering the plant and taking control of certain rice cell processes, eventually killing the rice cells. Pathovar oryzae does this in the vascular system of the plant, which typically allows the bacterium to spread faster and cause more damage than is its cousin, oryzicola, which is limited to growth in the tissue between the veins.

Some types of rice are naturally resistant to the Xanthomonas bacteria. Bogdanove and other researchers -- Bing Yang, Iowa State assistant professor of genetics development and cell biology; Dan Nettleton, Iowa State professor of statistics; and Frank White, principal investigator and professor of plant pathology at Kansas State University, Manhattan -- are researching why some types of rice are naturally resistant to the bacteria.

In rice varieties that are resistant to the diseases, the team is exposing the plants to the two bacteria. They then check to see which plant genes are activated, and to what extent.

By identifying which genes are turned on, Bogdanove believes the team can identify the genes that are making the plants resistant.

"We are looking at genes of successful plants," he said. "What genes are active and when and how much they are being turned on."

Bogdanove hopes that this effort will aid in breeding the resistance into cultivated varieties that are currently susceptible to the diseases.

Another aspect of the research is aimed at discovering how the bacteria change gene expression in susceptible rice plants.

"If we understand which genes are being manipulated by the pathogens in disease, we can look into different varieties and wild relatives of rice for variants of these genes that are immune to manipulation and bring these genes into cultivated varieties," said Bogdanove. "The idea is to reduce or eliminate susceptibility altogether."

Rice is the major food staple for more than half the world's population. In the United States, rice is planted on almost 3 million acres with yields of around 7,000 pounds per acre in 2007, according the U.S. Department of Agriculture.

American producers grow 95 percent of the rice eaten in this country and the United States is a major exporter as well, according to Bogdanove.

In addition to the benefits to rice, the research should be helpful in understanding and controlling diseases in other cereal crops.

"Rice is a model plant for cereal biology," said Bogdanove.

Funding for the project comes from the National Science Foundation through Kansas State University, the lead institution on the project. Of the $3 million award for the project, $2 million is going to Iowa State.

Adam Bogdanove | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>