Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers to determine if aeration reduces compaction, runoff on no-till fields

03.04.2009
Much of Texas' wheat may be grazed as a part of a dual-use crop. But many fields are still prepared using conventional tillage, which may not efficiently capture rainfall – a key to economic success in a semi-arid environment, said a Texas AgriLife Research scientist.

Dr. Paul DeLaune, environmental soil scientist at the Texas AgriLife Research and Extension Center at Vernon, said tillage operations can increase soil compaction, thereby increasing runoff.

Each year, depending on market conditions, up to 75 percent of wheat planted in Texas may be grazed, and of that, 95 percent is under conventional tillage, DeLaune said.

"There is a perception among some producers considering no-till production that using no-till in dual-use wheat production will increase compaction and therefore reduce water infiltration and decrease yields," he said. "Studies are needed to determine whether or not this perception is valid."

One management practice to potentially reduce compaction and/or increase water infiltration is the use of an aerator in no-till dual-use systems, DeLaune said.

The tines of the aerator can be varied from 0 to 10 degrees offset, with soil disturbance increased by increasing the offset, he said. The aerator will disturb the soil down to the depth of 8 inches, yet leave considerable residue on the soil surface.

At the Smith-Walker research field near Vernon, DeLaune studied the impact of different tillage operations in dual-use wheat on runoff quantity, water quality and nutrient loss.

Tillage treatments were applied in early September and included: conventional-till, no-till and no-till with aerator offsets at 0, 2.5, 5, 7.5 and 10 degrees. Although two production systems were to be compared (graze-out and graze plus grain), no livestock grazing took place due to drought and poor forage production. However, there was extensive grazing from whitetail deer, he said.

In mid-December, 1.5- by 2-meter plots were established in the two production systems. Rainfall simulators were used to apply a runoff-producing event to the crop, he said.

A simulated rainfall of about 2.75 inches per hour was showered over the crop and allowed to continue until one-half hour after runoff had started. The runoff water was collected, measured and analyzed for quantity and quality.

In his study, DeLaune timed the minutes it took to achieve runoff. He said the runoff came quickest, in the highest quantity and with the most soil erosion from the conventional-tilled plots.

The total amounts of ammonium and phosphorous in the runoff water were higher also from the conventional-tilled plots.

There was no statistical difference in runoff volume, soil erosion and nutrient runoff amounts between the no-till plots and the aerated treatments, he said.

These initial results show that the use of an AerWay aerator may not be economical, based solely on soil and water conservation. Grazing effects and grain yields may indicate otherwise as the study continues, DeLaune said. Grazing effects and grain yields were not taken due to the extreme and persistent drought in 2008-2009.

Runoff quantity, water quality and yield data will continue to be collected over the next two years.

Dr. Paul DeLaune | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>