Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers to determine if aeration reduces compaction, runoff on no-till fields

03.04.2009
Much of Texas' wheat may be grazed as a part of a dual-use crop. But many fields are still prepared using conventional tillage, which may not efficiently capture rainfall – a key to economic success in a semi-arid environment, said a Texas AgriLife Research scientist.

Dr. Paul DeLaune, environmental soil scientist at the Texas AgriLife Research and Extension Center at Vernon, said tillage operations can increase soil compaction, thereby increasing runoff.

Each year, depending on market conditions, up to 75 percent of wheat planted in Texas may be grazed, and of that, 95 percent is under conventional tillage, DeLaune said.

"There is a perception among some producers considering no-till production that using no-till in dual-use wheat production will increase compaction and therefore reduce water infiltration and decrease yields," he said. "Studies are needed to determine whether or not this perception is valid."

One management practice to potentially reduce compaction and/or increase water infiltration is the use of an aerator in no-till dual-use systems, DeLaune said.

The tines of the aerator can be varied from 0 to 10 degrees offset, with soil disturbance increased by increasing the offset, he said. The aerator will disturb the soil down to the depth of 8 inches, yet leave considerable residue on the soil surface.

At the Smith-Walker research field near Vernon, DeLaune studied the impact of different tillage operations in dual-use wheat on runoff quantity, water quality and nutrient loss.

Tillage treatments were applied in early September and included: conventional-till, no-till and no-till with aerator offsets at 0, 2.5, 5, 7.5 and 10 degrees. Although two production systems were to be compared (graze-out and graze plus grain), no livestock grazing took place due to drought and poor forage production. However, there was extensive grazing from whitetail deer, he said.

In mid-December, 1.5- by 2-meter plots were established in the two production systems. Rainfall simulators were used to apply a runoff-producing event to the crop, he said.

A simulated rainfall of about 2.75 inches per hour was showered over the crop and allowed to continue until one-half hour after runoff had started. The runoff water was collected, measured and analyzed for quantity and quality.

In his study, DeLaune timed the minutes it took to achieve runoff. He said the runoff came quickest, in the highest quantity and with the most soil erosion from the conventional-tilled plots.

The total amounts of ammonium and phosphorous in the runoff water were higher also from the conventional-tilled plots.

There was no statistical difference in runoff volume, soil erosion and nutrient runoff amounts between the no-till plots and the aerated treatments, he said.

These initial results show that the use of an AerWay aerator may not be economical, based solely on soil and water conservation. Grazing effects and grain yields may indicate otherwise as the study continues, DeLaune said. Grazing effects and grain yields were not taken due to the extreme and persistent drought in 2008-2009.

Runoff quantity, water quality and yield data will continue to be collected over the next two years.

Dr. Paul DeLaune | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

nachricht Maize pest exploits plant defense compounds to protect itself
28.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>