Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers to determine if aeration reduces compaction, runoff on no-till fields

03.04.2009
Much of Texas' wheat may be grazed as a part of a dual-use crop. But many fields are still prepared using conventional tillage, which may not efficiently capture rainfall – a key to economic success in a semi-arid environment, said a Texas AgriLife Research scientist.

Dr. Paul DeLaune, environmental soil scientist at the Texas AgriLife Research and Extension Center at Vernon, said tillage operations can increase soil compaction, thereby increasing runoff.

Each year, depending on market conditions, up to 75 percent of wheat planted in Texas may be grazed, and of that, 95 percent is under conventional tillage, DeLaune said.

"There is a perception among some producers considering no-till production that using no-till in dual-use wheat production will increase compaction and therefore reduce water infiltration and decrease yields," he said. "Studies are needed to determine whether or not this perception is valid."

One management practice to potentially reduce compaction and/or increase water infiltration is the use of an aerator in no-till dual-use systems, DeLaune said.

The tines of the aerator can be varied from 0 to 10 degrees offset, with soil disturbance increased by increasing the offset, he said. The aerator will disturb the soil down to the depth of 8 inches, yet leave considerable residue on the soil surface.

At the Smith-Walker research field near Vernon, DeLaune studied the impact of different tillage operations in dual-use wheat on runoff quantity, water quality and nutrient loss.

Tillage treatments were applied in early September and included: conventional-till, no-till and no-till with aerator offsets at 0, 2.5, 5, 7.5 and 10 degrees. Although two production systems were to be compared (graze-out and graze plus grain), no livestock grazing took place due to drought and poor forage production. However, there was extensive grazing from whitetail deer, he said.

In mid-December, 1.5- by 2-meter plots were established in the two production systems. Rainfall simulators were used to apply a runoff-producing event to the crop, he said.

A simulated rainfall of about 2.75 inches per hour was showered over the crop and allowed to continue until one-half hour after runoff had started. The runoff water was collected, measured and analyzed for quantity and quality.

In his study, DeLaune timed the minutes it took to achieve runoff. He said the runoff came quickest, in the highest quantity and with the most soil erosion from the conventional-tilled plots.

The total amounts of ammonium and phosphorous in the runoff water were higher also from the conventional-tilled plots.

There was no statistical difference in runoff volume, soil erosion and nutrient runoff amounts between the no-till plots and the aerated treatments, he said.

These initial results show that the use of an AerWay aerator may not be economical, based solely on soil and water conservation. Grazing effects and grain yields may indicate otherwise as the study continues, DeLaune said. Grazing effects and grain yields were not taken due to the extreme and persistent drought in 2008-2009.

Runoff quantity, water quality and yield data will continue to be collected over the next two years.

Dr. Paul DeLaune | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>