Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at UJI and CSIC patent a method to remove organic pollutants from molluscs

04.12.2007
Researchers at the Universitat Jaume I (UJI) and the Spanish Research Council (CSIC) have patented an innovative method to remove organic pollutants, such as pesticide residues, from bivalve molluscs. The new technique increases the rate of removal of organic compounds by a factor of two or, depending on the type of pollutant, even four with respect to other methods used to date.

Bivalve molluscs (mussels, oysters, clams and cockles, among others) obtain their food by filtering sea water in order to retain the organic particles it contains. But together with nutrients, molluscs also tend to accumulate other suspended particles such as organic pollutants, which later enter the human organism when the molluscs are eaten.

The cultivation of bivalve molluscs in shallow waters close to urban, industrial and agricultural areas may cause these organisms to accumulate organic pollutants, including pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, furans and endocrine disruptors. High consumption of these polluted animals during periods of intense contamination represents a serious concern for public health.

According to a number of studies, chronic exposure to pesticides and the other pollutants mentioned above is associated to a higher risk of developing cancer and certain neurodegenerative disorders such as Parkinson’s disease. Moreover, endocrine disruptors may interact with the metabolic system of animals and humans and deteriorate a variable number of developmental functions. This is why it is necessary to detoxify molluscs before they are eaten.

To date, this decontamination consisted in treating them with filtered, sterilised water or by applying hydrostatic pressure at high temperatures for 48 hours. However, complete removal of pesticides from the tissues of the bivalve molluscs takes several days, so the conventional treatment may not be sufficient.

“The method that we have developed allows us to improve this process and means that pesticides can be removed from the tissues of molluscs twice or even four times as quickly, depending on the type of pollutant. It also increases tolerance to oxidative stress”, says Roque Serrano, a scientist at the University Institute of Pesticides and Waters at UJI and co-author of the study.

The method consists in utilising N-acetylcysteine, a substance that is capable of stimulating the intracellular synthesis of glutathione and triggers glutathione S-transferase and glutathione reductase activity in mussels. Glutathione is essential in most living organisms, since it intervenes in several very important cellular phenomena, such as detoxification of xenobiotics and the elimination of free radicals. The importance of the work carried out by the UJI and CSIC researchers lies in the fact that it proves that administration of N-acetylcysteine enhances glutathione activity in molluscs and, therefore, has remarkable applications as a technique for removing pollutants from mussels.

The researchers responsible for the invention of the method are Samuel Peña Llopis, who currently works at the Simmons Comprehensive Cancer Center at the UT Southwestern Medical Center in Dallas, Roque Serrano Gallego, from the University Institute of Pesticides and Waters at UJI, and Juan B. Peña Forner, from the Department of Biology, Culture and Pathology of Marine Species at the CSIC’s Torre de la Sal Aquaculture Institute.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ES/noticies/detall&id_a=10952204

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>