Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tilapia, a model fish for research and genome frequencing

10.10.2007
Tilapia, a fish that originates from southern countries, has been introduced in over 100 countries. It is the second most commonly produced fish in aquaculture in the world after carp (99% is produced and consumed in China).

Raising tilapia is easy and inexpensive. It adapts well to fresh or salt water and fattens fast. Unlike most salmoniforms in aquaculture (salmon, trout, perch, bream), for which fishmeal and fish oil constitute an essential part of their diet, tilapia is lower down in the trophic or food chain and feeds on algae, plankton or small animals. In extensive and semi-extensive production systems, tilapia is largely fed on vegetable waste (rice, cotton, etc.).

Thus, with output exceeding 2 million tons each year, tilapia production contributes to sustainable development without damaging marine resources. This is one of the arguments put forward to support research into the complete sequencing of the tilapia genome. In addition, it is one of two species of interest to aquaculture which is being studied more than any other in laboratories.

Sex determination at the service of aquaculture

This model fish belongs to the order percomorphs which includes many French and European species, such as perch, bream and pargo bream. These fish take a long time to reach sexual maturity, which means that their genetic study is not easy. As tilapia has a short generation gap, it can be used as a study model for improving percomorphs. It is also the main group used for studying the phenomena of speciation (birth of a new species).

Of the 10 laboratories involved in the tilapia genome sequencing project, CIRAD and Stirling University of Aquaculture (Great Britain), are particularly interested in the benefits that the project may represent for aquaculture. They are researching genes linked to characteristics of interest, such as growth, rusticity, sex ratio (proportion of males to females), etc.

The tilapia breeders are calling on research for the selection of male tilapias, which grow much faster than the females. The CIRAD research unit Aquaculture and aquatic resource management is developing research programmes to find a real hormone-free alternative for producing single sex male populations. Research into genetics and the use of breeding conditions could provide solutions to the danger of hormones in food, human health and the preservation of biodiversity.

”High water temperature may influence the sex of fingerlings, so we are genetically selecting parents in the hope that the progeny will have this heritable characteristic, “ explains Jean-François Baroiller, a scientist at the research unit Aquaculture and aquatic resource management. Genetic markers for thermal sensitivity are used to optimise this kind of selection and also to study individuals of interest within the natural diversity of tilapias. A similar approach has been set up to develop tilapias resistant to high variations in water salinity in order to meet the demand of numerous producing countries.

The expected development of the first sequences will complete numerous specific genome resources for tilapia that have already been developed by CIRAD. Three PhD students from the research unit Aquaculture and aquatic resource management are working full-time on these issues in collaboration with international research organisations. The sequencing project is already of considerable benefit to the scientific community as well as for world aquaculture.

* CIRAD (France)
University of Maryland (United States)
Stanford University (United States)
Rutgers University (United States)
Harvard University (United States)
University of Konstanz (Germany)
Tokyo Institute of Technology (Japan)
University of Stirling (Scotland)
University of Bern (Switzerland)
Georgia Institute of Technology (United States)

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/presse/communique.php?id=308

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>