Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring nectar from eucalypts

02.08.2007
The effect of logging on canopy nectar production in tall forest trees has for the first time been investigated by NSW DPI researchers, with funding from the Honeybee Program of the Rural Industries Research and Development Corporation and Forests NSW.

State forests provide the major honey resource for the beekeeping industry in NSW.

While Forests NSW has a number of management practices in place to retain nectar-producing trees during logging operations, there has been no information on how much nectar is produced by retained trees or young trees regrowing after logging.

Indeed, beekeepers have expressed concern about the effects of logging on nectar production, especially the perception that young trees do not produce as much nectar as mature trees.

The two eucalypt species chosen for research, Spotted Gum Corymbia maculata and Grey Ironbark Eucalyptus paniculata, are of prime importance to nectarfeeding wildlife, the timber industry and beekeepers.

Using cranes and cherry-pickers, flowers in forest canopies over 30 metres high on the NSW south coast were accessed. Nectar in flowers bagged overnight was measured to determine how much nectar they produce.

Both large and small trees were measured in forest with different logging histories: recently logged, regrowth and mature (more than 50 years since logging).

After measuring thousands of flowers, the study concluded that nectar production in Spotted Gum on a per flower basis was not affected by logging history nor tree size.

When the amount of nectar produced by whole forest stands is estimated on the basis of individual flower measurements and counts of flowers and trees, the study found that mature forest produced almost 10 times as much sugar per hectare as recently logged forest.

However, because current logging practices result in a mosaic landscape, where some areas are logged and others are left untouched, the impact is far less.

An estimate of nectar production at a ‘compartment’ scale found a recently logged compartment produced half the amount of nectar as a compartment of mature forest.

Most importantly, nectar was not a limited resource in 2005, when the research was undertaken, as extensive flowering was recorded across the south coast.

The study surveyed local beekeepers with questionnaires and found that honey yields in 2005 were extremely high: a typical 1000 hectares of spotted gum forest flowering from April-August yielded five tonnes of honey.

Honey productivity was found to be comparable across the three different logging histories: recently logged, regrowth and mature. But not every year is as good as 2005, with flowers measured in 2003 providing a strong contrast.

Few trees were in flower and nectarivores, especially birds and honeybees, left virtually no nectar behind by mid-morning.

Beekeepers reported that hive bees were not producing honey under these conditions.

Results for grey ironbark showed similarities to spotted gum with regard to the impact of logging, but the species differed markedly in other aspects of nectar production.

The results of this study will help promote sustainability by raising the awareness of forestry organisations about the importance of the nectar resource for native fauna and honeybees and that of beekeepers about current forest management.

Contact Brad Law, forest resources scientist, West Pennant Hills, 9872 0162 or bradl@sf.nsw.gov.au

Joanne Finlay | EurekAlert!
Further information:
http://www.nsw.gov.au

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>