Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring nectar from eucalypts

The effect of logging on canopy nectar production in tall forest trees has for the first time been investigated by NSW DPI researchers, with funding from the Honeybee Program of the Rural Industries Research and Development Corporation and Forests NSW.

State forests provide the major honey resource for the beekeeping industry in NSW.

While Forests NSW has a number of management practices in place to retain nectar-producing trees during logging operations, there has been no information on how much nectar is produced by retained trees or young trees regrowing after logging.

Indeed, beekeepers have expressed concern about the effects of logging on nectar production, especially the perception that young trees do not produce as much nectar as mature trees.

The two eucalypt species chosen for research, Spotted Gum Corymbia maculata and Grey Ironbark Eucalyptus paniculata, are of prime importance to nectarfeeding wildlife, the timber industry and beekeepers.

Using cranes and cherry-pickers, flowers in forest canopies over 30 metres high on the NSW south coast were accessed. Nectar in flowers bagged overnight was measured to determine how much nectar they produce.

Both large and small trees were measured in forest with different logging histories: recently logged, regrowth and mature (more than 50 years since logging).

After measuring thousands of flowers, the study concluded that nectar production in Spotted Gum on a per flower basis was not affected by logging history nor tree size.

When the amount of nectar produced by whole forest stands is estimated on the basis of individual flower measurements and counts of flowers and trees, the study found that mature forest produced almost 10 times as much sugar per hectare as recently logged forest.

However, because current logging practices result in a mosaic landscape, where some areas are logged and others are left untouched, the impact is far less.

An estimate of nectar production at a ‘compartment’ scale found a recently logged compartment produced half the amount of nectar as a compartment of mature forest.

Most importantly, nectar was not a limited resource in 2005, when the research was undertaken, as extensive flowering was recorded across the south coast.

The study surveyed local beekeepers with questionnaires and found that honey yields in 2005 were extremely high: a typical 1000 hectares of spotted gum forest flowering from April-August yielded five tonnes of honey.

Honey productivity was found to be comparable across the three different logging histories: recently logged, regrowth and mature. But not every year is as good as 2005, with flowers measured in 2003 providing a strong contrast.

Few trees were in flower and nectarivores, especially birds and honeybees, left virtually no nectar behind by mid-morning.

Beekeepers reported that hive bees were not producing honey under these conditions.

Results for grey ironbark showed similarities to spotted gum with regard to the impact of logging, but the species differed markedly in other aspects of nectar production.

The results of this study will help promote sustainability by raising the awareness of forestry organisations about the importance of the nectar resource for native fauna and honeybees and that of beekeepers about current forest management.

Contact Brad Law, forest resources scientist, West Pennant Hills, 9872 0162 or

Joanne Finlay | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>