Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mother knows best - even how to improve crop yield

30.07.2007
Scientists at the University of Oxford have paved the way for bigger and better quality maize crops by identifying the genetic processes that determine seed development.

Plant scientists have known for some time that genes from the maternal plant control seed development, but they have not known quite how. The Oxford research, supported by the Biotechnology & Biological Sciences Research Council (BBSRC) and highlighted in the new issue of BBSRC Business, has found at least part of the answer.

Working in collaboration with researchers in Germany and France, Professor Hugh Dickinson's team found that only the maternal copy of a key gene responsible for delivering nutrients is active. The copy derived from the paternal plant is switched off. This gene encodes a potential signalling molecule found in the endosperm - a placenta-like layer that nourishes the developing grain, which is involved in 'calling' for nutrients from the mother plant, and so triggers an increased flow of resources. Similar mechanisms can almost certainly be expected in other cereals, and with cereal grain being a staple food across the world, the potential to harness this science to improve yields is clear.

Prof. Dickinson explains: "By understanding the complex level of gene control in the developing grain, we have opened up opportunities in improving crop yield.

"The knowledge and molecular tools needed to harness these natural genetic processes are now available to plant breeders and could help them improve commercial varieties further. For example, they can better understand how to successfully cross-breed to produce higher quality crops. The cereal grain is a staple food of the world's population: with the changing climate and growing population, the need for sustainable agriculture is increasingly pressing."

The mechanism used to switch off paternal genes ensures supremacy of maternally-derived genes. This process is known as 'imprinting' and is achieved mainly through 'methylation' - a naturally occurring chemical change in the DNA. A very similar mechanism takes place in animal embryos. However, unlike the animal imprinting systems where genes are often grouped in the chromosomal DNA, in maize imprinted genes are 'solitary' and independently regulated.

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>