Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUREKA TRIQ SORTING project develops a new sorting system for better grain-based foods

20.12.2006
Quality control is a fundamental part of today’s food production industry, yet many factors that affect quality are not easy to assess with current technologies. A team of well-trained workers can pick out bad apples from a production line, for example, but very small items like wheat grains can also vary in quality in ways that are not detectable, even by the keenest of eyes.

Wheat kernel composition is closely related to final product quality, and while plant breeders are actively developing tailor-made grains with novel starch and other characteristics, these factors still vary widely even within a single plant.

“Humans realised very early that not all grains are created equal,” explains Bo Löfqvist, CEO of Sweden’s BoMill AB, “but the process of sorting grains by hand is very tiresome and inefficient, so we devised machines to do it automatically.” Today, the most common technological approaches to sorting grain, seeds, and other small particles involve detecting size, colour or density. “They are effective to a certain extent,” says Löfqvist, “but there are still other characteristics, of wheat grains, for example, that cannot be detected by any of these methods and that nevertheless have an important impact on quality.”

Kernels at the kernel

BoMill is a small company based in Lund Sweden. Its motto is, ‘We qualify grain one by one’, and that’s exactly what they are doing with the new TRIQ SORTING system. BoMill’s EUREKA partner is Cimbria Heid, another small company, based in Austria, which specialises in the development and installation of seed and grain processing plants. Its product range includes all machines required for the cleaning, drying, sorting, treating, weighing and packing of seed.

Together, Löfqvist’s team have devised a system for sorting wheat grains and the like based on internal content, not external appearance. “We know that there are qualitative differences between individual grains of wheat,” he explains. “Even on a single wheat plant, which produces a maximum of about 100 grains, there are significant qualitative differences between the individual grains. Some of the grains will be better suited to biscuit production, for example. Others will make better bread. A third type will be best for producing pasta.” But, until now, says Löfqvist, it has been very difficult to tell these grains apart, and some existing methods for determining kernel quality are destructive.

Ingenious device

“The TRIQ SORTING system involves capturing individual particles, in this case wheat grains, in little pockets on the inside surface of a specially equipped cylinder, sort of like the drum of a clothes washing machine,” says Löfqvist. The grains are irradiated individually with infrared light and the reflections analysed by a specially designed detector. From there, the grains are shot out by bursts of air into appropriate receptacles. The cylinder rotates and the next batch of grains is analysed.

Löfqvist and his team say the new system simplifies the wheat grain sorting process. “We have already demonstrated the feasibility of this system for sorting wheat for food production. It has also been used to sort malting barley.” Incredibly, he says the system is capable of sorting, with a high degree of accuracy, as many as two billion individual wheat kernels per hour. The market potential is also staggering, considering the wide range of possible applications in the food industry alone.

“The project has been very successful,” says Löfqvist. “We have managed to identify the principals for upscaling the capacity of our more or less handmade prototype by a factor of 500.” The TRIQ SORTING team is now looking forward to further operational testing and, ultimately, full-scale commercialisation.

“EUREKA was instrumental in helping to get the new system up and running,” says Löfqvist. “We are now looking to move our machine onto the market where we are hoping for a very good reception.”

High praise for EUREKA

Löfqvist says that for SMEs like BoMill, finding appropriate funding sources can be a nightmare. “EUREKA, on the other hand, inspires us,” he explains, “and gives us hope to continue with our entrepreneurial work. Personally, I would like to see EUREKA given a mandate to support projects one step further towards commercialisation. They know the European dimension and they know how to set priorities, how to plan and how to follow up in order to secure success.”

“I have never worked with a research instrument as skilled and efficient as EUREKA,” says Löfqvist. “And you should know that I have worked with many, as an applicant, as a receiver of funding and as an officer. In my opinion, EUREKA is excellent in directing and focusing R&D work towards commercial goals. They really contributed to the successful outcome of this project through their experience and skill.”

Sally Horspool | alfa
Further information:
http://www.eureka.be
http://www.eureka.be/triqsorting

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>