Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Got cotton? Texas researchers' discovery could yield protein to feed millions

21.11.2006
A scientific method used to explore cancer and HIV cures now has been successfully used by agricultural researchers in the quest to develop food for the world's hungry.

"The exciting finding is that we have been able to reduce gossypol – which is a very toxic compound – from cottonseed to a level that is considered safe for consumption," said Dr. Keerti Rathore, Texas Agricultural Experiment Station plant biotechnologist. "In terms of human nutrition, it has a lot of potential." The cottonseed from these plants meet World Health Organization and U.S. Food and Drug Administration standards for food consumption, he said, potentially making the seed a new, high-protein food available to 500 million people a year.

The work, announced today (Nov. 20) in the Proceedings of the National Academy of Sciences, was done by Rathore and a team of scientists from the Experiment Station, Texas A&M University and the U.S. Department of Agriculture's Southern Plains Research Center in College Station.

Gossypol naturally occurs within the glands in all the above-ground parts of the cotton plant including the seed. Rathore said the "beauty of this project" is that the gossypol has been reduced only in the cottonseed -- where the high levels of protein are packed -- but not in the rest of the plant where the compound serves as a defense against insects and disease.

The team used RNAi, or technology that can "silence" a gene. This enabled them to target the gossypol gene only in the cottonseed but let the gene express itself in the rest of the plant. The discovery of RNAi is what landed the Nobel Prize for Medicine this year for U.S. scientists Andrew Z. Fire and Craig C. Mello.

"What we have done is use this technology to selectively inhibit a gene that codes for an enzyme that is involved in the gossypol biosynthetic pathway in the seed, " Rathore said.

Cotton fibers have been spun into fabric for more than 7,000 years. For most of that time, products from the fuzzy seed that is extracted in the fiber process have been edible only for cattle. They can tolerate gossypol only after digesting it through the four compartments of their stomachs.

"Very few people realize that for every pound of cotton fiber, the plant produces 1.6 pounds of seed," Rathore pointed out. "The world produces 44 million metric tons of cottonseed each year. Cottonseed typically contains about 22 percent protein, and it's a very high-quality protein."

In all, about 10 million metric tons of protein are contained in that amount of seed, he said.

Decades ago, California and Texas researchers were able to breed cotton varieties that contained no gossypol glands throughout the plant. But glandless varieties were a commercial failure, Rathore said, because the lack of any gossypol made the plants a delicious treat for insects and diseases.

Processes have been developed to extract gossypol, making the oil available for human consumption but at great expense, he said. Plus, the meal that is left after the oil is removed still contains the gossypol and thus is not edible for humans, or for pigs, chickens or turkeys.

Plants with the new trait developed by the team could make the plant more valuable both as a fiber and a food crop.

"One could utilize the cottonseed either directly as food if there is no gossypol or as feed for livestock," he said.

The food value of the cotton crop may be for countries "where there are small farmers who grow cotton, and if they could use the seed they could get much more value from it," Rathore noted.

He believes food products ultimately could be developed from the cottonseed of these new plants. Though the glandless cotton varieties bred by Experiment Station researchers in the late 1970s and 1980s suffered from insects and disease, one of the food products -- TAMUnuts -- made from the seed of these plants could be eaten by humans.

This discovery will yield not just one new variety, but rather "a new trait that can be bred into any good commercial variety, and the trait should be maintained generation after generation," Rathore said.

The researchers have been successful in maintaining the trait through three generations in lab work. The next step will be to screen for the best plants from the many lines they have produced, then grow plants with the trait in a greenhouse.Field demonstrations will follow that, he said.

He estimates at least another decade in the development of cotton varieties for widespread commercial production.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>