Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Got cotton? Texas researchers' discovery could yield protein to feed millions

21.11.2006
A scientific method used to explore cancer and HIV cures now has been successfully used by agricultural researchers in the quest to develop food for the world's hungry.

"The exciting finding is that we have been able to reduce gossypol – which is a very toxic compound – from cottonseed to a level that is considered safe for consumption," said Dr. Keerti Rathore, Texas Agricultural Experiment Station plant biotechnologist. "In terms of human nutrition, it has a lot of potential." The cottonseed from these plants meet World Health Organization and U.S. Food and Drug Administration standards for food consumption, he said, potentially making the seed a new, high-protein food available to 500 million people a year.

The work, announced today (Nov. 20) in the Proceedings of the National Academy of Sciences, was done by Rathore and a team of scientists from the Experiment Station, Texas A&M University and the U.S. Department of Agriculture's Southern Plains Research Center in College Station.

Gossypol naturally occurs within the glands in all the above-ground parts of the cotton plant including the seed. Rathore said the "beauty of this project" is that the gossypol has been reduced only in the cottonseed -- where the high levels of protein are packed -- but not in the rest of the plant where the compound serves as a defense against insects and disease.

The team used RNAi, or technology that can "silence" a gene. This enabled them to target the gossypol gene only in the cottonseed but let the gene express itself in the rest of the plant. The discovery of RNAi is what landed the Nobel Prize for Medicine this year for U.S. scientists Andrew Z. Fire and Craig C. Mello.

"What we have done is use this technology to selectively inhibit a gene that codes for an enzyme that is involved in the gossypol biosynthetic pathway in the seed, " Rathore said.

Cotton fibers have been spun into fabric for more than 7,000 years. For most of that time, products from the fuzzy seed that is extracted in the fiber process have been edible only for cattle. They can tolerate gossypol only after digesting it through the four compartments of their stomachs.

"Very few people realize that for every pound of cotton fiber, the plant produces 1.6 pounds of seed," Rathore pointed out. "The world produces 44 million metric tons of cottonseed each year. Cottonseed typically contains about 22 percent protein, and it's a very high-quality protein."

In all, about 10 million metric tons of protein are contained in that amount of seed, he said.

Decades ago, California and Texas researchers were able to breed cotton varieties that contained no gossypol glands throughout the plant. But glandless varieties were a commercial failure, Rathore said, because the lack of any gossypol made the plants a delicious treat for insects and diseases.

Processes have been developed to extract gossypol, making the oil available for human consumption but at great expense, he said. Plus, the meal that is left after the oil is removed still contains the gossypol and thus is not edible for humans, or for pigs, chickens or turkeys.

Plants with the new trait developed by the team could make the plant more valuable both as a fiber and a food crop.

"One could utilize the cottonseed either directly as food if there is no gossypol or as feed for livestock," he said.

The food value of the cotton crop may be for countries "where there are small farmers who grow cotton, and if they could use the seed they could get much more value from it," Rathore noted.

He believes food products ultimately could be developed from the cottonseed of these new plants. Though the glandless cotton varieties bred by Experiment Station researchers in the late 1970s and 1980s suffered from insects and disease, one of the food products -- TAMUnuts -- made from the seed of these plants could be eaten by humans.

This discovery will yield not just one new variety, but rather "a new trait that can be bred into any good commercial variety, and the trait should be maintained generation after generation," Rathore said.

The researchers have been successful in maintaining the trait through three generations in lab work. The next step will be to screen for the best plants from the many lines they have produced, then grow plants with the trait in a greenhouse.Field demonstrations will follow that, he said.

He estimates at least another decade in the development of cotton varieties for widespread commercial production.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>