Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research may reduce global need for nitrogen fertilizers

29.06.2006
Research published today (June 29) in the journal Nature reveals how scientists at the John Innes Centre (JIC), Norwich and Washington State University, USA have managed to trigger nodulation in legumes, a key element of the nitrogen fixing process, without the bacteria normally necessary. This is an important step towards transferring nodulation, and possibly nitrogen fixation, to non-legume crops which could reduce the need for inorganic fertilizers.

The researchers, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the Royal Society and the US National Science Foundation, have used a key gene that legumes require to establish the interaction with the nitrogen-fixing bacteria to trigger the growth of root nodules, even in the absence of the bacteria.


White clover: Clover is a common legume of the UK and is often used to naturally enrich agricultural soils for nitrogen - Image courtesy Andrew Davies, John Innes Centre


Clover pasture: Clovers form an essential component of the UK pastures, that are used for cattle and sheep grazing. The clover provides a lot of protein to grazing animals and also supports the nitrogen content of the soil, reducing the need for fertiliser application to UK grasslands. Image courtesy Heather McCalman, Insitute of Grassland and Environmental Research

The fixation of nitrogen by some plants is critical to maintaining the health of soil as it converts the inert atmospheric form of nitrogen into compounds usable by plants. Legumes, as used in this study, are an important group of plants as they have the ability to fix nitrogen – which they owe to a symbiotic relationship with nitrogen-fixing bacteria in root nodules. Legumes are often used as a rotation crop to naturally enhance the nitrogen content of soils. Scientists have been working for a number of years to understand the symbiosis between legumes and rhizobial bacteria, with the hope that one day they can transfer this trait to crop plants, the majority of which cannot fix nitrogen themselves.

Intensive crop agriculture depends heavily on inorganic fertilisers that are often used to provide nutrients particularly nitrogen that are critical for plant growth. The production of nitrogen fertilisers requires a large amount of energy and is estimated to constitute approximately 50 per cent of the fossil fuel usage of the modern agricultural process. Inorganic fertilizers also cause environmental problems associated with leeching into our water systems.

Dr Giles Oldroyd is the research leader at JIC. He said: “We now have a good understanding of the processes required to activate nodule development. The nodule is an essential component of this nitrogen fixing interaction as it provides the conditions required for the bacteria. Nodules are normally only formed when the plant perceives the presence of the bacteria. The fact that we can induce the formation of nodules in the plant in the absence of the bacteria is an important first step in transferring this process to non-legumes. If this could be achieved we could dramatically reduce the need for inorganic nitrogen fertilizers, in turn reducing environmental pollution and energy use. However, we still have a lot of work before we can generate nodulation in non-legumes.”

Professor Julia Goodfellow, Chief Executive of BBSRC, commented: “BBSRC is the principal funder of fundamental plant research in the UK and commits millions of pounds a year to furthering our understanding of basic plant biology. Such fundamental research may seem disconnected from the every day world for many people but this project shows how potentially important such science is. The findings have the potential to lead to a practical application with substantial economic impact for the UK.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>