Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human albumin from tobacco plants

24.03.2006
Human serum albumin (HSA) is the intravenous protein most commonly used in the world for therapeutic ends.
It is employed to stabilise blood volume and to avoid risk of a heart attack, its administration in operating theatres being almost a daily occurrence. It is used for haemorrhages, burns, surgical operations or when the patient shows symptoms of malnutrition or dehydration, chronic infections and renal or liver illnesses. The annual consumption in Spain is about 10 tons but, at a worldwide level, the demand exceeds 500 tons.

Agricultural engineer, Alicia Fernández San Millán, has developed a novel technique in Spain - plastidial transformation, in order to produce, in a recombinant form, human albumin from tobacco plants. According to her PhD thesis, plastidial transformation is an economically viable alternative, as it enables increasing the levels of HSA by between 10 and a 100 times, compared to levels obtained by nuclear transformation.

The title of the PhD is: “Production of human serum albumin in tobacco plants by means of plastidial transformation”. It should be added that this novel technique, fruit of Ms Fernández San Millán’s PhD, has been patented at a world level and there is already a company interested in marketing it.

An efficacious and cheap alternative

Commercial albumin is currently extracted from blood, but the lack of sufficient reserves to cover all worldwide needs has instigated researchers to look for new formulae to multiply this protein. One of the methods most used has been the obtention of HSA from yeasts and mammal cells. However, their high market-place costs have meant that these methods are not competitive. While the price at the pharmacy of albumin produced using plasma is 4 euros per gram, that obtained from yeasts or mammal cells costs between 300 and 4,000 euros per gram. Another option worked on over recent years has been the production of albumin from vegetables, always using nuclear transformation.

The novelty in this research arises from the method of obtention of the HSA. The plastidial system enables the extraction of great quantities of albumin. With nuclear transformation, the maximum level obtained is 0.5% of the total soluble protein of the plant, while application of the plastidial system multiplies this percentage by fourteen (to 7%), reaching an average of 0.9 milligrams of HSA per gram of fresh leaf weight.

The key is the place where the gene in question is deposited. With the nuclear transformation method, it integrates into the DNA of the cell nucleus of the leaf and, thus, can only manage a small number of copies of the gene. With the plastidial system, on the other hand, the gene is introduced into the chloroplast, where photosynthesis takes place and where the genomes can multiply up to 10,000 times.

A property highly valued by the experts has to be added to these positive results: the production of albumin from plants using this technique does not involve the escape of genes through pollen transmission given that, with most crops under cultivation, the genome of the plastids is inherited maternally.

More biomass in tobacco plants

The tobacco plant is very easy to handle genetically and also it is great generator of biomass. The authoress of the thesis says that up to 100 tons of biomass per hectare can be obtained in optimum growth conditions. “Given that the protein is produced in the chloroplasts, the more the leaf biomass we have, the more albumin we can get”.

To date all the trials undertaken with tobacco plants have been with laboratory varieties. The aim is to do tests with commercial varieties. Laboratory plants are very small and, as a result, the quantity of albumin extracted is not sufficient. However, the commercial varieties of tobacco are some 30 times more productive in terms of biomass.

Despite the advantages demonstrated by the experts, there is still a long way to go. Involving, as it does, a protein that is intravenously injected into patients, it has to be thoroughly purified to eliminate any kind of contaminant. Moreover, it is necessary to assure that the protein obtained has an identical structure to the human one to guarantee that its functioning will be 100%.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=926

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>