Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how crops use the length of the day to decide when to flower

15.11.2005


Scientists at the John Innes Centre (JIC) [1] in Norwich, UK, report today a breakthrough in understanding how crop plants use daylength to ensure they flower at the right time of year. In an article published in the international journal Science, they describe a gene that controls how barley reacts to the length of the day and thus controls when it flowers.

Most plants flower at a particular time of the year and researchers have known for a long time that plants use cues from their environment to control when they flower. Many crops, including barley, react to the length of the day (daylength) and use this to determine their flowering time.

“Different varieties of barley (and other crops) respond to daylength in different ways and this has been used to breed varieties adapted to grow in different farming environments” said Dr David Laurie (Project Leader at JIC). “Our result is exciting because for the first time we have identified the gene (called Ppd-H1) [2] that controls this very important response and now understand how plants monitor daylength. This should help breeders who are breeding new varieties for new environments and changing agricultural conditions – caused by global climate change.”



Some barley varieties respond very quickly to the lengthening days in spring and so flower early in the summer. Others respond much more slowly and flower later. Early flowering is an advantage in places where the summers are hot and dry, such as the Mediterranean, because the plants can complete their life cycle before they are exposed to the stresses of high summer. In places like England, where the summers are cool and wet, late flowering is an advantage because the longer growing period allows the crops to deliver higher yields.

“Now we have identified the gene we will be able to find out how many versions of this gene there are in barley and which environments they match”, said Dr Laurie. “This will give us a better picture of the history of our crops and help us understand how crops have been bred for different environments around the world. Our studies suggest that the same gene may be important in wheat and rice. If this is true, then it will prove to be a gene that has been very influential in the process of domesticating wild plants to bring them into agriculture.

[1] The John Innes Centre

The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

[2] Ppd-H1 (Photoperiod H-1)

The Ppd-H1 gene is part of a genetic pathway that controls barley’s response to daylength.

Plants, like humans and many other organisms, have an internal clock. In barley this clock regulates the daily activity of a gene called CO (constans) so that CO activity increases to a peak and then decreases on a daily cycle. Peak CO activity only coincides with the plant being exposed to daylight if the length of the day is long enough. When this happens CO activates a gene called FT (flowering locus T) which stimulates flower formation.

The Ppd-H1 gene affects the timing of CO expression during the day. A variant of the gene found in late flowering barley causes the peak of CO expression to be shifted to later in the day. This requires a longer day length to enable the FT gene to be expressed and so delays flowering until longer days.

Dr David Laurie | alfa
Further information:
http://www.jic.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>