Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois research zeroing in on optimum soil nitrogen rates

02.09.2005


A new study to evaluate the Illinois Soil N Test (ISNT) calls into question traditional soil fertility recommendations and promises a radical new soil-based approach that will benefit crop yields, the environment, and the bottom line for farmers.

In a forthcoming issue of the Soil Science Society of America Journal, scientists at the University of Illinois at Urbana-Champaign will outline how current nitrogen recommendations are faulty, the soybean credit is invalid, and balanced fertility makes for optimum nitrogen uptake. As well, the article highlights the importance of plant populations and crop residue management for proper usage of nitrogen fertilizers.

"Our work involved 102 on-farm nitrogen-response studies conducted throughout Illinois in six growing seasons from 1990 to 2003. A site-by site evaluation of the proven-yield method showed that current fertilizer recommendations are not only wrong, they are scientifically indefensible," said Richard Mulvaney, a professor of soil fertility.



"We’re on the edge of a revolution in nitrogen fertilizer recommendations," said Saeed Khan, a research specialist in agriculture and co-developer of the ISNT that estimates the soil’s nitrogen-supplying capacity. "We’re going away from yield-based management to a system that quantifies the main source, which is the soil,"

"The traditional ’proven-yield’ approach says higher yielding areas need more fertilizer nitrogen, whereas crop nitrogen response is typically lowest in these areas. We have found that what matters most is how much nitrogen comes from the soil. Rich soils need less nitrogen from fertilizer, while poorer soils need more," Mulvaney said.

Balanced Fertility

Mulvaney and his colleagues looked at several sites where a high ISNT value was incorrect in predicting negligible response to applied nitrogen and concluded that balanced fertility is key to efficient crop use of fertilizer nitrogen.

"Two of these sites had a soil pH down around 5. It has been known for a hundred years that acidity inhibits the mineralization of nitrogen," Mulvaney said. "So although these soils tested high by the ISNT, the nitrogen wasn’t available to the crop because of reduced mineralization."

Low levels of potassium and/or phosphorous were noted for other high-testing sites that were unresponsive to nitrogen.

"Low potash levels in the soil can limit the utilization of nitrogen," Khan said. "For example, potassium is involved in numerous enzymatic reactions in the plant, so even though nitrogen may be taken up when potassium is deficient it won’t be utilized efficiently in making amino acids, proteins, and many other essential plant components."

Plant Populations

A decade ago, the normal plant population for corn was 18,000 to 24,000 plants per acre. Today, it’s more like 30,000 to 35,000 plants per acre.

"We noticed that several of the sites where the ISNT failed in recent years had much higher plant populations. And this makes perfect sense, as a larger soil reserve would be required to feed more plants per acre. So we’ve realized that it would be necessary to adjust the critical test level according to plant density," Mulvaney said.

"This fact has far-reaching consequences. It means that we now have a basis for both variable-rate planting and nitrogen fertilization," said Khan. "So, if a farmer has a high ISNT value in part of a field, not an unusual occurrence, he can boost his planting rate somewhat to take advantage of a greater soil nitrogen reserve. Or vice versa, if an area has a low ISNT value, the farmer could plant lower populations or add more fertilizer."

Crop Residues

Increased plant populations lead to more crop residues after harvest, below as well as on the soil surface. The extra residues have an effect on soil nitrogen cycling and availability, and can increase the critical level for the ISNT.

"Crop residues are about 40 percent organic carbon," Mulvaney said. "There is an inherent link between microbial cycling of carbon and nitrogen that has long been overlooked in managing nitrogen fertilizers. With higher planting rates, more nitrogen will initially be tied up or immobilized, but some of this will subsequently be released or mineralized as the microbes die and decay."

The Soybean Credit

Higher planting rates have also impacted the proven-yield practice of reducing nitrogen recommendations by 40 pounds per acre when corn follows soybean.

"We have seen ISNT levels that are higher in corn-after-corn than corn-after-soybeans, which is consistent with the greater nitrogen requirements we observed for a corn-soybean rotation," Khan said. "So in many cases, the proven-yield method is overfertilizing continuous corn and underfertilizing corn after soybeans."

The soybean credit originated several decades ago, when planting and nitrogen rates were considerably lower than at present. Soybeans are legumes. They nodulate and therefore fix atmospheric nitrogen, but are more apt to use soil resources when available. Mulvaney maintains that with today’s production systems, soybeans vary widely in their net effect on soil nitrogen availability, which was found to be negative when the ISNT value was high.

Need for Improved Soil Sampling

Although corn roots grow to a depth of seven feet, nutrient needs are often assessed by sampling only the upper seven inches of soil. "And fertilizer is seldom applied below this depth," Mulvaney said. "So I worry that we are depleting the subsoil, where the crop really needs the fertility, while we concentrate fertilizer where the crop doesn’t benefit from it as much -- especially in a dry year. I suspect we have to recalibrate soil tests to the most effective sampling depth -- whatever that is."

Gary Beaumont | EurekAlert!
Further information:
http://www.uiuc.edu
http://www.aminosugarntest.com

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>