Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air bubbles in breakfast syrup illustrate potential pathway to new technology

03.11.2004


The behavior of air bubbles in ordinary breakfast syrup demonstrates how scientists might be able to make vanishingly thin tubes and fibers for biomedical and other applications.



Previous experiments conducted in Sidney Nagel’s laboratory at the University of Chicago showed how to make liquid threads that measure only 10 microns in diameter (approximately one-fifth the diameter of a human hair). Now his Chicago colleague Wendy Zhang reports in the current issue of Physical Review Letters that it is theoretically possible to make much thinner threads by slightly altering experimental procedures. If proven in the laboratory, the technique has potential use in fiber optics, electronics and other industries. "There are many people who are trying to use this idea, or ideas like this, to make very thin wires," said Zhang, an Assistant Professor in Physics at the University of Chicago. "They’re very interested to know what’s the smallest size that they can achieve."

The calculation that Zhang devised to answer that question indicates there is no theoretical limit to the thinness of a thread produced via fluid flow. But the calculation doesn’t account for the microscopic building blocks of matter. In reality, she said, a thread cannot be thinner than the molecules of which it is made. "In my opinion, this great work will open wide new avenues for the controlled production of extremely thin and long holes in materials like polymers, glasses and ceramics," said Alfonso Gañán-Calvo of the Universidad de Sevilla in Spain. He added that the work could have "an enormous impact in fields from biomedicine and biotechnology to the hot nanotech industry."


This line of research began for Zhang in the laboratory of Nagel, the Stein-Freiler Distinguished Service Professor in Physics. Nagel has made what he calls "physics at the breakfast table" one of the hallmarks of his research. When Nagel introduced Zhang to his experiments in the flow of viscous fluids several years ago, "I was completely enchanted," she said.

Despite the whimsical breakfast theme, serious issues lurk behind Nagel’s work. He, along with Milan Mrksich, Professor in Chemistry, and Mark Garfinkel, Assistant Professor in Surgery, both at the University of Chicago, are working on a precisely controlled method of fluid flow to protect transplanted insulin-producing cells from the body’s immune system. The team has successfully coated small clumps of cells, but Zhang wondered if it would be possible to coat individual cells, should the need arise.

An ordinary bottle of syrup demonstrates the principle of viscous entrainment, the topic of Zhang’s paper. If you turn a bottle upside-down, a large air bubble slowly rises to the top. "With a long enough bottle, the rising movement can distort the bubble so severely that it takes on a tear-drop shape, with a thin tendril of air being drawn out from the rear," she explained.

The phenomenon illustrates how the flow in syrup naturally creates small, extended structures-in this case the trailing tendril of air, Zhang said. To make this tendril smaller than the 10-micron limit that Nagel and his associates have observed in the laboratory, they would need to constantly adjust the pressure on the back of the tube to keep the shape of the interface between the fluid and the air at the front always the same. "It’s an odd way to do the experiment. It’s not something that a good experimentalist would do just for the heck of it because it’s inconvenient and there’s no obvious payback," Zhang said. "But if the idea is right, there is a payback."

A method that already exists, called electrospinning, can make microscopically thin fibers. But Zhang noted that viscous entrainment has advantages over electrospinning. For example, electrospinning was recently adapted to create hollow fibers. This requires the use of two liquids, one for the sheath and one for the core, then remove the core. "There is a possibility that viscous entrainment would work directly with air so that you can do the entire processing in one step," Zhang said.

Today her idea exists only as a calculation in a scientific journal. It remains to be seen whether it will work in practice. "You don’t know until someone’s actually used it," she said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>