Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puzzle of corn’s origins coming together

05.04.2004


The scientific puzzle pieces are fitting together to form a definitive picture of the origin of corn, says a Duke University plant geneticist who has proposed that the world’s most important food crop originated in an ancient cross between two grasses.



Mary Eubanks described the latest evidence that corn, or maize, originated as a cross between teosinte and gamagrass, or Tripsacum, in a talk Friday, April 2, 2004, at a symposium on maize held at the annual meeting of the Society for American Archaeology (www.saa.org) in Montreal. Her research is supported by the National Science Foundation and the North Carolina Biotechnology Center.

Eubanks, an adjunct professor of biology, has developed evidence that modern corn, scientific name Zea mays, did not evolve solely from a Central American grass known as teosinte -- traditionally the most widely held theory. Rather, her experiments clearly demonstrate that corn arose from a serendipitously viable cross between teosinte and gamagrass.


Eubanks emphasized in an interview that her research has confirmed that teosinte was indeed one of corn’s ancestors, and that gamagrass was a critical genetic contributor. She contrasts her evidence with the former, highly controversial theory of the late biologist Paul Mangelsdorf, who espoused that teosinte was an offshoot of a cross between corn and Tripsacum rather than an ancestor of corn. "My hypothesis confirms that teosinte is an ancestor of maize, and that key genes were also contributed by gamagrass," she said. In her talk, Eubanks displayed examples of her crosses between species of teosinte and gamagrass that exhibit the evolution from the tiny spikes of teosinte seeds to the early versions of corn ears.

New evidence from other researchers that maize evolved very rapidly, perhaps over only a century, supports such a theory, said Eubanks. Rather than the long, slow progressive evolution from teosinte into maize, a fertile cross between teosinte and gamagrass could have relatively quickly yielded early versions of maize. In her talk, Eubanks displayed archaeological specimens of corn alongside matching segregates from experimental crosses between teosinte and gamagrass.

Eubanks also discussed her comparative DNA fingerprinting studies of teosinte and Tripsacum taxa, along with primitive popcorns from Mexico and South America. Those analyses of over a hundred genes in the taxa revealed that some 20 percent of the versions, called alleles, of specific genes found in maize are found only in Tripsacum. And, about 36 percent of the alleles in maize were shared uniquely with teosinte.

"These findings are by no means conclusive," said Eubanks. "We need to do a lot more sampling of the genetic diversity in different teosinte and Tripsacum species to further test this finding. But certainly, the preliminary evidence from this study supports the hypothesis that Tripsacum introgression could have been the energizing factor for the mutations that humans then selected to derive domesticated maize."

In such selections, theorized Eubanks, early humans would have selected -- from the wide range of plants that would result from such crosses -- those that had the most numerous and accessible seeds. Eventually, such selection would have resulted in the cob-like structure of today’s corn, she said.

Understanding the genetic origins of corn -- now the world’s single largest food crop-- is important both for production of new varieties and for preserving corn’s genetic heritage, said Eubanks.

"Because the crosses between teosinte and gamagrass bridge the sterility barrier between maize and Tripsacum, I’m now moving genes from gamagrass into corn," she said. "And we have developed drought-resistant and insect-resistant corn using conventional plant breeding methods."

For example, according to Eubanks, who is working with a commercial seed producer, test crops of some new hybrids have shown strong resistance to the billion-dollar bugs corn rootworm and European corn borer, along with corn earworm, another problematic corn pest.

"Understanding the genetic origins of corn and how people historically used corn could offer valuable insights for application to sustainable agriculture today," she said. "And finally, the gene pool underlying corn is part of our heritage that must be preserved if we are to retain the ability to solve agricultural problems such as new pests or the need for new farming methods."

Also, she noted, the scientific emphasis on corn is particularly timely because of recent findings that genetically altered corn is contaminating the native land races of maize and its wild relative teosinte currently in Mexico. This alteration of the natural gene pools of these genetic resources could have the effect of reducing the diversity of corn varieties, and compromise the ability to use those varieties as the basis for new crop strains.

According to Eubanks, the new drought and pest-resistant hybrids she and her colleagues have developed will undergo field tests this summer in the Midwest, followed by yield trials in winter nurseries, more field tests in the Midwest in 2005, and marketing seed in 2006.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu
http://www.saa.org

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>