Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pasture grass fights wheat fungus danger to plants, animals, people

27.11.2003


A western American pasture grass crossed with wheat can improve resistance to a fungus that can be toxic to plants, animals and people, according to Purdue University researchers.


Both wheat plants displayed by Purdue agronomy professor Herb Ohm have been infected with Fusarium head blight, or wheat scab. The plant on the left was crossed with a pasture grass to create a high level of resistance to the fungus, which is one of the primary diseases affecting wheat production. (Agricultural Communications photo/Tom Campbell)



Resistance genes in the grass that replaced genes in wheat increased protection against Fusarium head blight, or wheat scab, the scientists said. In the December issue of the journal Theoretical and Applied Genetics the researchers also report that they located and mapped the small bits of DNA, or markers, associated with the resistance gene in the grass, called tall wheatgrass.

"In the past 10 or 15 years, the fungus Fusarium graminearum has emerged as one of the diseases of primary concern in wheat," said Herb Ohm, Purdue agronomy professor. "This is because the widespread practice of reduced tillage in fields provides a perfect environment for growth of the fungus."


Reduced tillage, meaning the soil is not plowed for planting, cuts farmers’ costs and helps prevent erosion, he said. In the eastern United States, the upper Midwest and other places where large amounts of corn and wheat are both grown, Fusarium is a major problem, especially when the weather is warm and humid or rainy. Corn stalks left as natural mulch after harvest also foster fungus growth.

The fungus causes head blight that leads to major wheat crop losses. In 1996, crop losses due to Fusarium totaled at least $38 million just in Indiana, according to the U.S. Department of Agriculture.

"The disease has occurred most years since the early 1990s," Ohm said. "Its increase in frequency and severity coincide with reduced soil tillage, along with favorable weather – warm, humid conditions – for several weeks prior to and during wheat flowering in mid- to late-May."

The fungus also produces a mycotoxin that sickens animals and people. Pigs, cattle, horses, poultry and people can develop vomiting, loss of appetite, diarrhea, staggering, skin irritation and immunosuppression when they eat grain or hay infected by Fusarium. The most severe cases can be fatal.

Research has found evidence that these toxins may be cancer-causing. People usually ingest the fungus when they eat contaminated grains and cereals. According to the United Nations’ Food and Agriculture Organization, people in developing countries face the greatest risk from Fusarium mycotoxins.

"Fusarium production of mycotoxins is a more serious problem than wheat production loss," Ohm said. "The toxin results in complete loss because you can’t use the grain to make food for people or livestock."

The fungus can infect most cereal grains, including corn, wheat, barley and some oats.

Replacement of the wheat gene was done with conventional crossbreeding and selection and didn’t involve any genetic engineering. Because the two plants are closely related, the wheat is not altered, except for the added protection against Fusarium.

The newly identified resistance gene in the wheat grass is on a different chromosome in the genome than other known resistance genes used in wheat. This will enable researchers to combine the newly discovered effective resistance gene from wheatgrass with other genes that protect wheat against Fusarium. This breeding of a plant with more than one resistance gene is called gene pyramiding.

"For some diseases, such as Fusarium, a single resistance gene will not give you complete resistance," Ohm said. "So we try to identify genes from different resistant varieties or sources that will give some resistance.

"Then we use genetics to determine whether resistance genes from two different sources are on different locations in the genome. If they are, then we can pyramid them."

Now that Ohm and his team of researchers know they can combine the tall wheatgrass resistance gene with other resistance genes, they will try to produce a line of wheat with several genes resistant to Fusarium. The seed will then be available through the U.S. Department of Agriculture-Agricultural Research Service laboratory in Aberdeen, Idaho, that is a seed repository for wheat lines from around the world.

"The whole basis of plant breeding is to put the favorable genetic traits of different parent lines into one progeny line," Ohm said. "Prior to the DNA era, we had to rely on characterizing plants just on phenotype (observable traits). For certain traits that’s fairly easy to do. For many traits it’s difficult because of environmental effects.

"Some phenotypes have good crop yield in one environment but not in other environments. This makes it difficult to determine which genes affect yield in one wheat variety compared to another."

For instance, under perfect conditions, one wheat line might have a very high yield but may not in an arid climate. By using DNA to compare traits, environmental impact is not a factor because if a gene is present and activated, then scientists can ascertain if a characteristic is genetic or environmental, Ohm said. The bits of DNA known as markers allow scientists to determine more quickly whether the gene carrying the desired trait is present in a plant.

Other researchers on this study were Xiaorong Shen and Lingrang Kong, both postdoctoral fellows in Ohm’s research group.

The Ag Alumni Seed Improvement Association and Purdue Agricultural Research Programs provided funding for this research.


Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Herbert Ohm, (765) 494-8072, hohm@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031126.Ohm.fusarium.html
http://www.springerlink.com/app/home/issue.asp%3Fwasp%3D988hvprwmh5g4d2v9xaw%26amp;referrer%3Dparent%26amp;backto%3Djournal,1,101;brows
http://www.agry.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>