Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pasture grass fights wheat fungus danger to plants, animals, people

27.11.2003


A western American pasture grass crossed with wheat can improve resistance to a fungus that can be toxic to plants, animals and people, according to Purdue University researchers.


Both wheat plants displayed by Purdue agronomy professor Herb Ohm have been infected with Fusarium head blight, or wheat scab. The plant on the left was crossed with a pasture grass to create a high level of resistance to the fungus, which is one of the primary diseases affecting wheat production. (Agricultural Communications photo/Tom Campbell)



Resistance genes in the grass that replaced genes in wheat increased protection against Fusarium head blight, or wheat scab, the scientists said. In the December issue of the journal Theoretical and Applied Genetics the researchers also report that they located and mapped the small bits of DNA, or markers, associated with the resistance gene in the grass, called tall wheatgrass.

"In the past 10 or 15 years, the fungus Fusarium graminearum has emerged as one of the diseases of primary concern in wheat," said Herb Ohm, Purdue agronomy professor. "This is because the widespread practice of reduced tillage in fields provides a perfect environment for growth of the fungus."


Reduced tillage, meaning the soil is not plowed for planting, cuts farmers’ costs and helps prevent erosion, he said. In the eastern United States, the upper Midwest and other places where large amounts of corn and wheat are both grown, Fusarium is a major problem, especially when the weather is warm and humid or rainy. Corn stalks left as natural mulch after harvest also foster fungus growth.

The fungus causes head blight that leads to major wheat crop losses. In 1996, crop losses due to Fusarium totaled at least $38 million just in Indiana, according to the U.S. Department of Agriculture.

"The disease has occurred most years since the early 1990s," Ohm said. "Its increase in frequency and severity coincide with reduced soil tillage, along with favorable weather – warm, humid conditions – for several weeks prior to and during wheat flowering in mid- to late-May."

The fungus also produces a mycotoxin that sickens animals and people. Pigs, cattle, horses, poultry and people can develop vomiting, loss of appetite, diarrhea, staggering, skin irritation and immunosuppression when they eat grain or hay infected by Fusarium. The most severe cases can be fatal.

Research has found evidence that these toxins may be cancer-causing. People usually ingest the fungus when they eat contaminated grains and cereals. According to the United Nations’ Food and Agriculture Organization, people in developing countries face the greatest risk from Fusarium mycotoxins.

"Fusarium production of mycotoxins is a more serious problem than wheat production loss," Ohm said. "The toxin results in complete loss because you can’t use the grain to make food for people or livestock."

The fungus can infect most cereal grains, including corn, wheat, barley and some oats.

Replacement of the wheat gene was done with conventional crossbreeding and selection and didn’t involve any genetic engineering. Because the two plants are closely related, the wheat is not altered, except for the added protection against Fusarium.

The newly identified resistance gene in the wheat grass is on a different chromosome in the genome than other known resistance genes used in wheat. This will enable researchers to combine the newly discovered effective resistance gene from wheatgrass with other genes that protect wheat against Fusarium. This breeding of a plant with more than one resistance gene is called gene pyramiding.

"For some diseases, such as Fusarium, a single resistance gene will not give you complete resistance," Ohm said. "So we try to identify genes from different resistant varieties or sources that will give some resistance.

"Then we use genetics to determine whether resistance genes from two different sources are on different locations in the genome. If they are, then we can pyramid them."

Now that Ohm and his team of researchers know they can combine the tall wheatgrass resistance gene with other resistance genes, they will try to produce a line of wheat with several genes resistant to Fusarium. The seed will then be available through the U.S. Department of Agriculture-Agricultural Research Service laboratory in Aberdeen, Idaho, that is a seed repository for wheat lines from around the world.

"The whole basis of plant breeding is to put the favorable genetic traits of different parent lines into one progeny line," Ohm said. "Prior to the DNA era, we had to rely on characterizing plants just on phenotype (observable traits). For certain traits that’s fairly easy to do. For many traits it’s difficult because of environmental effects.

"Some phenotypes have good crop yield in one environment but not in other environments. This makes it difficult to determine which genes affect yield in one wheat variety compared to another."

For instance, under perfect conditions, one wheat line might have a very high yield but may not in an arid climate. By using DNA to compare traits, environmental impact is not a factor because if a gene is present and activated, then scientists can ascertain if a characteristic is genetic or environmental, Ohm said. The bits of DNA known as markers allow scientists to determine more quickly whether the gene carrying the desired trait is present in a plant.

Other researchers on this study were Xiaorong Shen and Lingrang Kong, both postdoctoral fellows in Ohm’s research group.

The Ag Alumni Seed Improvement Association and Purdue Agricultural Research Programs provided funding for this research.


Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Herbert Ohm, (765) 494-8072, hohm@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031126.Ohm.fusarium.html
http://www.springerlink.com/app/home/issue.asp%3Fwasp%3D988hvprwmh5g4d2v9xaw%26amp;referrer%3Dparent%26amp;backto%3Djournal,1,101;brows
http://www.agry.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>