Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cow’s resistance to worms is genetically determined

10.10.2003


Research carried out in the Netherlands has revealed that the genetic background of cattle apparently determines how quickly and effectively they acquire immunity to infections from gastrointestinal worms. Such infections cause considerable economic losses in the beef farming industry. During her doctoral research, Kirezi Kanobana investigated how cattle rid themselves of worms and prevent new infections.



Kanobana used an infection model in which, based on their genetic background, animals exhibited varying degrees of resistance to gastrointestinal worms. Broadly speaking there are three groups of animals. Two percent of the animals are naturally immune to a first infection. Another group reacts to the first infection with an effective immune response. In the event of a second infection these animals are protected. A third group is highly sensitive for infection and scarcely acquires any immunity even after repeated infections.

The researcher distinguished the three groups of animals by using two types of measurement. Three-month-old calves were infected with 100,000 larvae of a small-intestinal worm. After the infection an initial distinction was made on the basis of parasitological variables such as worm counts and the detection of eggs in the animals’ excreta. Secondly, immunological parameters were used to confirm the three groups of animals.


In an animal that has no resistance to a worm infection, the worms occur in the first part of the small intestine. In animals that develop resistance, worms are translocated towards the end of the small intestine.

Interestingly the male worms disappear out of the intestine first, followed by the female worms. This conclusion is based on a study six different parts of the small intestine, which in calves has a length of between 25 to 40 metres. In addition to this, Kanobana also discovered a number of mechanisms that are responsible for ensuring the disappearance of the worms from the small intestine.

Cattle pick up larvae from the grass, which develop into adult worms in the cattle’s gastrointestinal system. The worms reproduce sexually and lay eggs. The eggs pass out of the cattle with the excreta. In the dung, the eggs can once more develop into larvae. In this manner cattle can continually be reinfected by eating the grass.

Preventative anti-worm drugs are effective but are a potential risk to public health, as they are sometimes found in dairy and meat products. An understanding of how cattle acquire immunity might contribute to the development of a vaccine, which would be a good alternative for preventing gastrointestinal worm infections.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>