Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cow’s resistance to worms is genetically determined

10.10.2003


Research carried out in the Netherlands has revealed that the genetic background of cattle apparently determines how quickly and effectively they acquire immunity to infections from gastrointestinal worms. Such infections cause considerable economic losses in the beef farming industry. During her doctoral research, Kirezi Kanobana investigated how cattle rid themselves of worms and prevent new infections.



Kanobana used an infection model in which, based on their genetic background, animals exhibited varying degrees of resistance to gastrointestinal worms. Broadly speaking there are three groups of animals. Two percent of the animals are naturally immune to a first infection. Another group reacts to the first infection with an effective immune response. In the event of a second infection these animals are protected. A third group is highly sensitive for infection and scarcely acquires any immunity even after repeated infections.

The researcher distinguished the three groups of animals by using two types of measurement. Three-month-old calves were infected with 100,000 larvae of a small-intestinal worm. After the infection an initial distinction was made on the basis of parasitological variables such as worm counts and the detection of eggs in the animals’ excreta. Secondly, immunological parameters were used to confirm the three groups of animals.


In an animal that has no resistance to a worm infection, the worms occur in the first part of the small intestine. In animals that develop resistance, worms are translocated towards the end of the small intestine.

Interestingly the male worms disappear out of the intestine first, followed by the female worms. This conclusion is based on a study six different parts of the small intestine, which in calves has a length of between 25 to 40 metres. In addition to this, Kanobana also discovered a number of mechanisms that are responsible for ensuring the disappearance of the worms from the small intestine.

Cattle pick up larvae from the grass, which develop into adult worms in the cattle’s gastrointestinal system. The worms reproduce sexually and lay eggs. The eggs pass out of the cattle with the excreta. In the dung, the eggs can once more develop into larvae. In this manner cattle can continually be reinfected by eating the grass.

Preventative anti-worm drugs are effective but are a potential risk to public health, as they are sometimes found in dairy and meat products. An understanding of how cattle acquire immunity might contribute to the development of a vaccine, which would be a good alternative for preventing gastrointestinal worm infections.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>