Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging vineyards from space will benefit Europe’s wines

07.07.2003


Space data are set to become an added ingredient in future European wines. ESA is contributing Earth Observation data and expertise to a European Commission-backed project called Bacchus.



The aim is to chart the continent’’s vineyards in unprecedented detail, and provide vine growers with information tools to improve production management and guarantee grape quality.
From Bordeaux to Frascati, there is good reason why wines are always known for their home region. As any connoisseur will explain, a grape’s distinctive flavour is derived from localised characteristics such as soil type, microclimate, altitude and the slope of the ground. So wine-growing regions (and sub-regions within them) are legally demarcated as an assurance of quality – known as Controlled Origin Denominations (Appellation d’Origine in France, Denominazione d’Origine Controllata in Italy).

Europe is the most important wine producer in the world, and the Common Market Organisation for Wine (CMO) requires all wine-producing EU states to keep a register of vine production. However there is no standardised way of doing this: it is variously – and painstakingly – done by a combination of fieldwork, vine producer interviews and photo-interpretation of aerial photography.



In an attempt to create a more standardised alternative, the part-EC-funded Bacchus consortium has been started by some 14 public and private bodies from four wine-producing countries: Italy, France, Spain and Portugal.

"A strong point of the Bacchus consortium is the very complete range of involved users we have, covering different aspects of vine cultivation," said Manuel Bea of prime contractor Geosys. "In Spain and Portugal the users are governmental organisations involved in applying EC policy, while in France and Italy users belong to the wine production sector. The French GeoDASEA offers technical support to grape producers at a regional level. The Italian users are consortia of the Controlled Origin Denomination areas for Prosecco and Frascati, and the last user is a private French organisation which federates 2200 wine co-operatives."

The intention behind Bacchus is to use georeferenced aerial and satellite images to create a specialised geographical information system (GIS) tool for use in vine production. As well as enabling improved record keeping and statistics, this GIS tool will also help with land management. All relevant data on any given wine-growing region – vine inventories, administrative boundaries, slope angle relative to the Sun – can be made integrated into GIS and made easily accessible to vineyard managers. Meteorological data can also be added to the system.

For improved vineyard management, all these distinct data sets can be digitally combined together – a process like overlaying maps on top of one another – to obtain new and useful information, such as locating optimal areas for particular vine types, or where best to expand a given Controlled Origin Denomination’’s boundaries, or conversely identifying the least productive land so it can be grubbed up.

Automated vineyard recognition

French research institute Cemagref has the demanding role of developing pattern recognition technology for the automatic recognition of vineyards within satellite or aerial images.

"We have previous experience of image processing for agricultural applications," said Michel Deshayes of Cemagref. "For instance by textural analysis – automated recognition of distinctive structural elements - we have been able to distinguish weeds from crops on aerial images. We also worked on a robot that killed weeds with electricity to lessen use of pesticides, using leaf shape to identify weeds in close-up.

"For Bacchus our approach will be to combine both textural and shape information. At the scale of high-resolution satellite or aerial images, vineyard structure induces specific periodic patterns and spatial distributions."

The Bacchus project began earlier this year with a survey of pilot sites, including Italy’’s Frascati vineyards, where vines have been cultivated since Roman times – now home to ESA’’s Earth Observation centre ESRIN. The sites are being regularly re-imaged to acquire data on how vineyards develop through the growing season.

High-resolution multispectral satellite images of up to 0.65 m resolution are being acquired, as well as aerial photographs at higher resolution still – simulating next generation Earth Observation satellite data soon to become available. The aerial cameras are fitted with GPS so their photos can be precisely geo-referenced for integration within GIS systems.

The Frascati Controlled Origin Denomination consortium represents some 700 grape producers and 30 wine makers in the area. "We know this project is the way to go in the future," said Fulvio Comandini of the consortium. "Bacchus will give us – and all the other Controlled Origin Denominations across the country too – a customised information system to more precisely manage our entire system of production and also a fully objective means of guaranteeing the quality of our wine to the market."

For ESA the Bacchus project represents the agency’’s first involvement in the emerging precision farming area, using Earth Observation data to improve agricultural efficiency.

Luigi Fusco | alfa
Further information:
http://www.esa.int/export/esaSA/SEMO75XO4HD_earth_0.html

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>