Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging vineyards from space will benefit Europe’s wines

07.07.2003


Space data are set to become an added ingredient in future European wines. ESA is contributing Earth Observation data and expertise to a European Commission-backed project called Bacchus.



The aim is to chart the continent’’s vineyards in unprecedented detail, and provide vine growers with information tools to improve production management and guarantee grape quality.
From Bordeaux to Frascati, there is good reason why wines are always known for their home region. As any connoisseur will explain, a grape’s distinctive flavour is derived from localised characteristics such as soil type, microclimate, altitude and the slope of the ground. So wine-growing regions (and sub-regions within them) are legally demarcated as an assurance of quality – known as Controlled Origin Denominations (Appellation d’Origine in France, Denominazione d’Origine Controllata in Italy).

Europe is the most important wine producer in the world, and the Common Market Organisation for Wine (CMO) requires all wine-producing EU states to keep a register of vine production. However there is no standardised way of doing this: it is variously – and painstakingly – done by a combination of fieldwork, vine producer interviews and photo-interpretation of aerial photography.



In an attempt to create a more standardised alternative, the part-EC-funded Bacchus consortium has been started by some 14 public and private bodies from four wine-producing countries: Italy, France, Spain and Portugal.

"A strong point of the Bacchus consortium is the very complete range of involved users we have, covering different aspects of vine cultivation," said Manuel Bea of prime contractor Geosys. "In Spain and Portugal the users are governmental organisations involved in applying EC policy, while in France and Italy users belong to the wine production sector. The French GeoDASEA offers technical support to grape producers at a regional level. The Italian users are consortia of the Controlled Origin Denomination areas for Prosecco and Frascati, and the last user is a private French organisation which federates 2200 wine co-operatives."

The intention behind Bacchus is to use georeferenced aerial and satellite images to create a specialised geographical information system (GIS) tool for use in vine production. As well as enabling improved record keeping and statistics, this GIS tool will also help with land management. All relevant data on any given wine-growing region – vine inventories, administrative boundaries, slope angle relative to the Sun – can be made integrated into GIS and made easily accessible to vineyard managers. Meteorological data can also be added to the system.

For improved vineyard management, all these distinct data sets can be digitally combined together – a process like overlaying maps on top of one another – to obtain new and useful information, such as locating optimal areas for particular vine types, or where best to expand a given Controlled Origin Denomination’’s boundaries, or conversely identifying the least productive land so it can be grubbed up.

Automated vineyard recognition

French research institute Cemagref has the demanding role of developing pattern recognition technology for the automatic recognition of vineyards within satellite or aerial images.

"We have previous experience of image processing for agricultural applications," said Michel Deshayes of Cemagref. "For instance by textural analysis – automated recognition of distinctive structural elements - we have been able to distinguish weeds from crops on aerial images. We also worked on a robot that killed weeds with electricity to lessen use of pesticides, using leaf shape to identify weeds in close-up.

"For Bacchus our approach will be to combine both textural and shape information. At the scale of high-resolution satellite or aerial images, vineyard structure induces specific periodic patterns and spatial distributions."

The Bacchus project began earlier this year with a survey of pilot sites, including Italy’’s Frascati vineyards, where vines have been cultivated since Roman times – now home to ESA’’s Earth Observation centre ESRIN. The sites are being regularly re-imaged to acquire data on how vineyards develop through the growing season.

High-resolution multispectral satellite images of up to 0.65 m resolution are being acquired, as well as aerial photographs at higher resolution still – simulating next generation Earth Observation satellite data soon to become available. The aerial cameras are fitted with GPS so their photos can be precisely geo-referenced for integration within GIS systems.

The Frascati Controlled Origin Denomination consortium represents some 700 grape producers and 30 wine makers in the area. "We know this project is the way to go in the future," said Fulvio Comandini of the consortium. "Bacchus will give us – and all the other Controlled Origin Denominations across the country too – a customised information system to more precisely manage our entire system of production and also a fully objective means of guaranteeing the quality of our wine to the market."

For ESA the Bacchus project represents the agency’’s first involvement in the emerging precision farming area, using Earth Observation data to improve agricultural efficiency.

Luigi Fusco | alfa
Further information:
http://www.esa.int/export/esaSA/SEMO75XO4HD_earth_0.html

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>