Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method for measuring laughing gas production in soils is not working

28.02.2003


The method that has been used for the last twenty years to measure the production of laughing gas (nitrous oxide) from different natural sources is not working. Due to this, the size of some of the sources of this greenhouse gas has locally probably been underestimated. This conclusion is drawn by Nicole Wrage in her PhD thesis that she is going to defend at Wageningen University (Netherlands) on February 28.

The research of the PhD student at Wageningen University focussed on the production of laughing gas (N2O) in fertilized soil. This greenhouse gas is produced by different groups of soil bacteria. These bacteria convert ammonia to nitrate (nitrification) or they use nitrate (a soil compound containing nitrogen) to make nitrogen gas (denitrification). During these processes, laughing gas can be produced. To investigate along which biochemical way the laughing gas is produced, researchers have used since 1979 a relatively simple method based on the separation of some soil (incubation). To different incubations, some (0.02 %) acetylene gas, a lot of (100 %) oxygen or a combination of both gases is added. The acetylene is supposed to stop nitrification, whereas oxygen should inhibit the denitrification processes.

According to the study, this method does not work for all bacteria. Thus, the addition of acetylene gas did inhibit the production of laughing gas by the bacterium Nitrosomonas europaea. The bacterium Nitrosospira briensis, however, known from agricultural soils, was not influenced. According to the researcher Nicole Wrage, acetylene probably inhibits only some of the nitrifying bacteria in the soil. Oxygen, which should only stop denitrification processes in the incubations, was found to also inhibit part of nitrification. Due to these problems of the method, it is likely that nitrifying bacteria are an underestimated source of laughing gas.


Laughing gas is responsible for approximately six percent of global warming. Roughly seventy percent of the laughing gas is produced in the soil, especially after fertilization. Carbon dioxide is the largest cause of global warming.

Jac Niessen | alfa

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>