Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Method for measuring laughing gas production in soils is not working


The method that has been used for the last twenty years to measure the production of laughing gas (nitrous oxide) from different natural sources is not working. Due to this, the size of some of the sources of this greenhouse gas has locally probably been underestimated. This conclusion is drawn by Nicole Wrage in her PhD thesis that she is going to defend at Wageningen University (Netherlands) on February 28.

The research of the PhD student at Wageningen University focussed on the production of laughing gas (N2O) in fertilized soil. This greenhouse gas is produced by different groups of soil bacteria. These bacteria convert ammonia to nitrate (nitrification) or they use nitrate (a soil compound containing nitrogen) to make nitrogen gas (denitrification). During these processes, laughing gas can be produced. To investigate along which biochemical way the laughing gas is produced, researchers have used since 1979 a relatively simple method based on the separation of some soil (incubation). To different incubations, some (0.02 %) acetylene gas, a lot of (100 %) oxygen or a combination of both gases is added. The acetylene is supposed to stop nitrification, whereas oxygen should inhibit the denitrification processes.

According to the study, this method does not work for all bacteria. Thus, the addition of acetylene gas did inhibit the production of laughing gas by the bacterium Nitrosomonas europaea. The bacterium Nitrosospira briensis, however, known from agricultural soils, was not influenced. According to the researcher Nicole Wrage, acetylene probably inhibits only some of the nitrifying bacteria in the soil. Oxygen, which should only stop denitrification processes in the incubations, was found to also inhibit part of nitrification. Due to these problems of the method, it is likely that nitrifying bacteria are an underestimated source of laughing gas.

Laughing gas is responsible for approximately six percent of global warming. Roughly seventy percent of the laughing gas is produced in the soil, especially after fertilization. Carbon dioxide is the largest cause of global warming.

Jac Niessen | alfa

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>