Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Method for measuring laughing gas production in soils is not working


The method that has been used for the last twenty years to measure the production of laughing gas (nitrous oxide) from different natural sources is not working. Due to this, the size of some of the sources of this greenhouse gas has locally probably been underestimated. This conclusion is drawn by Nicole Wrage in her PhD thesis that she is going to defend at Wageningen University (Netherlands) on February 28.

The research of the PhD student at Wageningen University focussed on the production of laughing gas (N2O) in fertilized soil. This greenhouse gas is produced by different groups of soil bacteria. These bacteria convert ammonia to nitrate (nitrification) or they use nitrate (a soil compound containing nitrogen) to make nitrogen gas (denitrification). During these processes, laughing gas can be produced. To investigate along which biochemical way the laughing gas is produced, researchers have used since 1979 a relatively simple method based on the separation of some soil (incubation). To different incubations, some (0.02 %) acetylene gas, a lot of (100 %) oxygen or a combination of both gases is added. The acetylene is supposed to stop nitrification, whereas oxygen should inhibit the denitrification processes.

According to the study, this method does not work for all bacteria. Thus, the addition of acetylene gas did inhibit the production of laughing gas by the bacterium Nitrosomonas europaea. The bacterium Nitrosospira briensis, however, known from agricultural soils, was not influenced. According to the researcher Nicole Wrage, acetylene probably inhibits only some of the nitrifying bacteria in the soil. Oxygen, which should only stop denitrification processes in the incubations, was found to also inhibit part of nitrification. Due to these problems of the method, it is likely that nitrifying bacteria are an underestimated source of laughing gas.

Laughing gas is responsible for approximately six percent of global warming. Roughly seventy percent of the laughing gas is produced in the soil, especially after fertilization. Carbon dioxide is the largest cause of global warming.

Jac Niessen | alfa

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>