Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find New Way to Assess Where Cotton-Killing Pests Develop

04.12.2002


In a finding that could have broad implications for farmers’ ability to stop pests from decimating cotton crops, scientists from North Carolina State University and agricultural research stations in the Cotton Belt have developed a new technique to determine where the larvae of certain agricultural pests develop.



The study, which looks at the characteristics of the moths that the larvae turn into, shows that a large majority of late-season moths in the Cotton Belt - specifically Helicoverpa zea, a major pest of cotton commonly known as the cotton bollworm - are not developing on cotton and soybean plants, as the prevailing theory suggests, but are developing instead on plants like corn.

The research suggests that this non-toxic corn, therefore, provides a major refuge for H. zea moths, and as such is critical to halting the evolution of insecticide-immune pests, perhaps more so than existing small cotton refuges.


The scientists published their work in Proceedings of the National Academy of Sciences.

Although it seems counterintuitive, non-toxic refuges are essential to controlling pests like the cotton bollworm because the pests that come from these refuges have little to no immunity to toxins. It is estimated that about 80 to 95 percent of cotton bollworms are killed by transgenic cotton plants that produce Bt toxin - derived from the bacterium Bacillus thuringiensis - leaving a fair number of potentially immune caterpillars moving about. When these immune pests mate with pests from non-toxic plants, offspring are not immune to the Bt toxin, and are likely susceptible to die a Bt toxin-induced death.

The scientists - including NC State’s Dr. Fred Gould, William Neal Reynolds Professor of entomology, and Dr. Neal Blair, professor of marine, earth and atmospheric sciences; representatives from the USDA’s Southern Crops Research Lab in College Station, Texas, and the Louisiana Agricultural Experiment Station in Bossier City, La.; and two NC State students -used a novel technique called stable isotope assessment to gauge the origination of moths in late summer. The work was supported by the USDA Biotechnology Risk Assessment Program and the W.M. Keck Center for Behavioral Biology.

The scientists compared the ratios of carbon isotopes 13C and 12C in moths captured over three- and four-year periods from August to October in areas of Louisiana and Texas. These so-called stable isotopes are present in every living organism and in the air. Plants with a certain type of photosynthesis - those with C3 physiology, like cotton - are more depleted in 13C relative to 12C than plants with C4 physiology, like corn. Thus, looking at these ratios in moth wing tissue can provide clues to where the moths grew up, the researchers assert.

And knowing where the moths develop gives researchers clues to how refuges - plants that are not treated with insecticides - are working to put the brakes on the evolution of pests that are genetically resistant to insecticides.

Currently, about 60 percent of cotton grown in the Cotton Belt contains Bt toxin. The Environmental Protection Agency allows the planting of 50 percent Bt corn in cotton-growing areas, as opposed to 80 percent Bt corn in regions where cotton is not grown, Gould says. This policy assumes that H. zea moths migrate from the Cotton Belt to northern Corn Belt states in the summer, but do not return in the fall.

But, since less than 50 percent of late-season moths captured in the study were fed as larvae on cotton, they may be migrating from the Corn Belt, Gould says. This means the traditional assumptions about late-season H. zea moths - that they grow up on cotton, migrate to northern Corn Belt states and then die - seem to be wrong.

"Corn is most likely serving as the predominant alternate C4 host for H. zea," the paper asserts. "Currently, less than 25 percent of U.S. corn produces Bt toxin. If, in the future, most field corn planted in the northern and southern United States remains in non-Bt producing varieties, it could serve as a major H. zea refuge. Maintaining the current limit of 50 percent non-Bt corn in cotton-growing areas therefore seems appropriate for maintaining the long-term utility of Bt cotton."

"In the short term, this is good news for cotton farmers," Gould says. "It shows that corn can provide a refuge so cotton farmers don’t have to increase the non-toxic cotton refuge."

Gould says that problems can set in if Bt corn begins becoming ubiquitous in the Corn Belt. Fewer refuge plants - non-Bt corn, in this case - could allow pests’ resistance to Bt toxin to evolve more quickly, he says.

Dr. Fred Gould | EurekAlert!
Further information:
http://www.ncsu.edu/news/press_releases/02_12/317.htm

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>