Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Researchers Close In On Nicotine’s "Evil Cousin"

18.11.2002


Nicotine isn’t all bad, despite its addictive qualities and its presence in tobacco products, increasingly taboo in these health-conscious times. As a chemical compound, nicotine even has beneficial properties. It’s used around the world as a relatively cheap, environmentally friendly insecticide, repelling bugs that attack tobacco and other plants, and - contrary to popular misconceptions - it is not a carcinogen.


Dr. Ralph Dewey



Take a nicotine molecule and snip off a methyl group, though, and you’ve got nicotine’s evil cousin: nornicotine. (A methyl group is one carbon and three hydrogen atoms.) This truncated version of nicotine, helped by certain tobacco-leaf microbes, converts to nitrosamines - potent carcinogens - during the tobacco-curing process. If researchers could find the genetic location of the enzyme that removes nicotine’s methyl group, tobacco with little or no nornicotine would be possible.

That’s the task of Dr. Ralph Dewey, professor of crop science in the College of Agriculture and Life Sciences at North Carolina State University. Working with select lines of Burley tobacco, he and his colleagues are trying to isolate the nicotine N-demethylase gene from among the 25,000 or so unique genes found in tobacco.


When they’re successful, says Dewey, they’ll have achieved several key goals. "One, we’ll have created a large genomic database. Two, we’ll have the tools needed to reduce the levels of harmful nitrosamines in Burley tobacco. And three, we’ll develop information that could, perhaps, lead to alternate uses for this important North Carolina crop."

Tobacco’s genome, however, is just now being investigated, so Dewey and fellow researchers at the Genome Research Laboratory on NC State’s Centennial Campus are faced with a painstaking process of elimination. They do have a few clues, though. Nicotine changes to nornicotine when tobacco is "senescing" - getting old and turning yellow - so genes involved in the aging process are getting a close look. They also suspect that the chromosomal location of the culprit gene is "unstable," or prone to transposition or mutation, so such locations also warrant an interested eye. And if they can verify that the gene is of the type known as a "P450," they’ll have narrowed their search to about 500 genes - which is progress in Dewey’s line of work.

Dewey also has access to the Genome Research Lab’s microarray technology, which automates and computerizes a process once done by hand. Capable of placing up to 5,000 genes on microscope slides and showing results on a high-resolution scanner, the high-tech tool is speeding the search for the unwelcome, nornicotine-triggering gene.

Funded in part by the Philip Morris Companies, Dewey’s research is a modest but important part of the larger Tobacco Genome Project ongoing at NC State’s Genome Research Lab. Recognizing the huge role that tobacco plays in North Carolina’s - and other states’ - economy, and the need to both reduce its toxic compounds and find more uses for the crop, Dewey and his colleagues methodically pursue their quarry in the daunting molecular realm. Their efforts are largely unheralded, and success - so far - is elusive. But the days of nornicotine, nicotine’s ominous cousin, are probably numbered.

Ralph Dewey | EurekAlert!
Further information:
http://www.ncsu.edu/news/press_releases/02_11/305.htm

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>