Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping the Nation’s Renewable Energy Future

21.07.2008
Traditional economies may suggest that bigger is better, but the Oklahoma State University Biofuels Team has received widespread recognition for cautioning that is not the case with all forms of renewable energy.

“Our vision of the future intersection of energy and agriculture involves a decentralized energy production system,” said Danielle Bellmer, OSU food processing engineer with the Robert M. Kerr Food and Ag Products Center and coordinator of the team’s development efforts with sweet sorghum ethanol.

The decentralized system would consist of dispersed energy generation plants, with potentially a different technology and feedstock combination in every region of the country, and even areas of some states such as Oklahoma, one of only four states in the nation to have more than 10 distinct ecological regions.

It is a message that has received notice at the highest levels. The OSU Biofuels Team was among the 13 programs nationwide honored as a Grand Challenge recipient by the U.S. government at the 2nd Annual Bio Energy Awareness Days event in Washington D.C., June 19-22.

Bellmer said decentralization allows for optimum technology selection, matching a region to the appropriate resources and generating local solutions for the fulfillment of energy needs without negatively affecting food and fiber production.

“Diversification of feedstocks leads to improved logistics and reduced risks associated with fueling huge energy production systems, particularly important for the low-density biomass that potentially may be used in agriculture-based energy production,” she said.

In addition, many byproducts associated with renewable energy production will be available for beneficial, cost-effective local uses in a decentralized system. For example, appropriate crop residues not used in the energy process potentially could be used in feeding livestock.

Transportation costs are reduced threefold: in the feedstock supply chain, distribution of the final product and in the dispersal of byproducts or waste products.

One important feature is that a decentralized system helps to disperse monetary gains, particularly into local economies, said Ray Huhnke, biosystems and agricultural engineer who coordinates OSU’s multi-college, multi-institutional biofuels effort.

“If agriculture is to play a significant role in the future of renewable energy, there must be a considerable benefit to America’s agribusiness operators and rural communities,” he said.

As new industries are introduced into communities, the demand on local utilities can be significant. For example, large water supplies may be required for processing, as well as increased wastewater treatment capacity.

“A decentralized system provides a better means to distribute the burden and reduce the effect on local municipalities,” Huhnke said.

Then there are the national security concerns. Dependence on a small number of energy sources makes the United States vulnerable to potential attacks on the nation’s energy supply. Diversification reduces that risk.

“The renewable energy landscape will be a mosaic of diverse elements, meeting specific needs at the local, state, regional and national levels. Our state and federally mandated land-grant mission makes the university well suited to help shape America’s energy future,” said Robert E. Whitson, vice president, dean and director of the OSU Division of Agricultural Sciences and Natural Resources.

Division research into biomass fuel-source improvement in the early 1990s kicked off OSU’s longstanding involvement in biofuels development, years before President Bush brought biofuels into the national consciousness with his January 2006 State of the Union address.

“For most people, the conversation about biofuels is a rather recent topic,” Whitson said. “OSU has been working for years to develop the necessary tools and relevant expertise to help community leaders and residents make sound decisions about renewable energy development while balancing economic, social and environmental considerations.”

The OSU Biofuels Team is comprised of scientists and engineers within the division; the OSU College of Engineering, Architecture and Technology; the University of Oklahoma; Mississippi State University and Brigham Young University.

“Our being honored as a Grand Challenge winner at this summer’s national Bio Energy Awareness Days event in Washington D.C. is another example of the university’s recognized leadership in biobased product development and technology transfer,” Whitson said.

Oklahoma State University, U. S. Department of Agriculture, State and Local governments cooperating. Oklahoma State University in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal and state laws and regulations, does not discriminate on the basis of race, color, national origin, gender, age, religion, disability, or status as a veteran in any of its policies, practices, or procedures, and is an equal opportunity employer.

Donald Stotts | Newswise Science News
Further information:
http://www.okstate.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>