Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scattered Nature of Wisconsin's Woodlands Could Complicate Forests' Response to Climate Change

17.07.2008
If a warmer Wisconsin climate causes some northern tree species to disappear in the future, it's easy to imagine that southern species will just expand their range northward as soon as the conditions suit them.

The reality, though, may not be nearly so simple. A model developed by University of Wisconsin-Madison forest ecologists Robert Scheller and David Mladenoff suggests that while certain northern species, such as balsam fir, spruce and jack pine, are likely to decline as the state's climate warms, oaks, hickories and other southern Wisconsin trees will be slow to replace them.

Why? Not only is warming expected to outpace the speed at which southern trees can migrate northward, but barriers to dispersal - particularly agricultural lands - will also likely delay their progress, says Mladenoff.

"The result is that northern forest biomass in the future - that is, the standing amount of forest - could decrease, because the trees that are there now will be experiencing less than optimal conditions," he says. "And the southern species aren't going to fill in as quickly as we'd like." He and Scheller report their findings in the current issue of Climate Research.

Mladenoff explains that trees "move" into new areas by producing seeds, which are then carried over short distances by wind, birds or mammals. Under the right conditions, dispersed seeds then grow into seedlings and eventually mature trees, which produce their own seeds to start the process all over again.

Already a slow process, dispersal becomes even slower when forests are broken up by farmland and urban areas - or fragmented - like they are in Wisconsin. Not only is less suitable habitat available overall, but patches of it can also be widely scattered, making it tough for seeds to cross the gaps. In particular, Mladenoff points to the wide band of agricultural land that runs across the middle of the state as a major obstacle to the northward migration of southern trees.

To arrive at their conclusions, Scheller and Mladenoff fed current satellite classification and forest inventory data for a 1.5 million-hectare area of northwestern Wisconsin into a model, LANDIS-II, that's designed to predict how landscapes will respond to climate shifts. Using two well-established sets of future climate predictions, they then examined changes in parameters such as forest succession, seed dispersal and tree growth during the next 200 years.

In the face of the scientists' predictions, is there anything woodland managers can do now? Mladenoff cautions people not to make any drastic management changes. But one thing managers might begin to try is assisted migration: testing how certain southern Wisconsin species - or even different genetic stocks of the same species - do when planted up north on a trial basis. A prime candidate for experiments like this might be sugar maple, says Mladenoff, which is already widely distributed across Wisconsin and is projected to "do OK" on moist soils in the north when the climate warms.

The state might even consider bringing back the field trials that used to go on routinely in the 1950s and '60s, he says, in which researchers would collect genetic variants of individual tree species all over the state and then plant them in many locations to see where they did best. Although time-consuming, an approach like this could help ease some of the uncertainty we're facing now.

"A lot of this is about our incomplete knowledge of how genetically diverse some species are," Mladenoff says, "and how adaptable they may be in different climates."

Madeline Fisher | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>