Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice Plants That Resist Uptake of Arsenic Could Ease Shortage

06.05.2008
More than 80 percent of the world’s population depends on rice as a staple food, but production is dropping in the rice paddies of Bangladesh, parts of India and South and East Asia due to toxic levels of arsenic in the topsoil.

Om Parkash of the University of Massachusetts Amherst leads a research team that uses genetic engineering to produce rice plants that block the uptake of arsenic, which could increase production of this valuable crop and provide safer food supplies for millions.

“By increasing the activity of certain genes, we can create strains of rice that are highly resistant to arsenic and other toxic metals,” says Parkash, a professor of plant, soil and insect sciences. “Rice plants modified in this way accumulate several-fold less arsenic in their above-ground tissues, and produce six to seven times more biomass, making the rice safer to eat and more productive.” This could help alleviate the current world-wide rice shortage.

Deep tube wells installed to provide drinking water in Bangladesh and other countries are producing water with naturally occurring levels of arsenic that greatly exceed safe limits in drinking water. Groundwater is then being used to irrigate rice paddies, and this irrigation is causing a buildup of arsenic in topsoils that is toxic to the rice plants, reducing the amount of rice that can be produced in a given area.

According to Parkash, arsenic builds up in all parts of the plant, including the rice grains used for food, creating health problems in hundreds of thousands of people, including several forms of cancer. Arsenic is also present in the rice straw used as animal fodder, causing arsenic to enter the food chain in dairy products and meat, and affecting the health of animals.

“Already on the Indian subcontinent, particularly in Bangladesh and West Bengal, there are more than 300,000 people who have developed cancer from arsenic poisoning by drinking contaminated water and eating contaminated food,” says Parkash. “The World Health Organization has dubbed this one of the major environmental disasters in human history.”

Parkash is currently working with the UMass Amherst Office of Commercial Ventures and Intellectual Property and several interested companies to bring this technology to the marketplace. “Basically, the companies will use our gene constructs in new or existing rice lines, producing hybrid rice that will go through the cultivation and seed production stage,” says Parkash. “Then the new strains of rice will be commercialized and brought to market.”

Parkash’s research is funded through the Massachusetts Technology Transfer Center from the Office of the President of the University of Massachusetts. A podcast featuring research by Parkash can be found at http://www.umasstechcast.org.

Om Parkash | newswise
Further information:
http://www.umasstechcast.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>