Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gypsy Moth Management Made More Efficient, Cost-Effective

07.04.2008
A computer model that provides land managers with a more efficient and cost-effective approach for controlling gypsy moths and other invasive pests has been created by biologists at Penn State University and the University of Cambridge in the United Kingdom.

Gypsy moths, which were introduced to North America in the late 1860s, are responsible for the defoliation of over a million acres of forest land each year and the loss of tens of millions of dollars.

In a paper to be published later this month (April 2008) in the journal Ecological Applications, the team's results indicate that the best strategies for managing the destructive pests include eradicating medium-density infestations and reducing high-density infestations, rather than reducing spreading from the main infestation.

"Our model is state dependent, which means that it recommends different management strategies depending on the situation," said Katriona Shea, Penn State associate professor of biology and the team's leader. "Most managers currently use the same strategy in all situations, but our model suggests that by tailoring their approach to a particular situation, managers can be more effective in slowing the spread of invasive species."

Saving time and money is of the utmost importance with gypsy moths, which have by now spread throughout the northeastern United States and into the Midwest. "Some people argue that it's just a matter of time before the moths spread across the entire United States, so why bother trying to slow them down?" said Shea. "But we see it differently. We hope that by slowing their spread we can buy some time to find a better way to deal with them."

Although the model has little to offer those states that already have succumbed to infestation, it does have the potential to slow or halt the moths' spread into new areas. States that stand to benefit the most include North Carolina, Virginia, West Virginia, Ohio, Indiana, Illinois, and Wisconsin.

"Where I live in Pennsylvania, it's too late to slow the moths' spread because they already are prevalent across the entire state," said Shea. "It's so bad here that, at certain times, if you stand in the forest and listen, it sounds like it's raining, but what's raining is their excrement." Nevertheless, she added, "It's not too late to try to control their abundance in Pennsylvania. There is still a lot that can be done."

The model's results allow managers in those states where the moths are actively spreading to select a management strategy based on the number of medium-density and high-density infestation patches within their jurisdictions. The model ignores smaller patches because they often go extinct by themselves and, if they escape extinction as small patches, they will be detected in the model as medium patches. For example, if an area contains 20 medium patches and 20 large patches, the model suggests that managers should focus their energy and money on reducing some of those large patches to medium patches. This strategy, ultimately, would be the most effective means of controlling gypsy moths in that particular circumstance. "The model allows us to determine an exact optimal solution to a management problem," said Tiffany Bogich, a member of the reserach team who formerly was an undergraduate student at Penn State and now is a graduate student at the University of Cambridge.

"We really think this model, tailored to particular locations, could be quite useful to land managers," said Shea. "After all, we're not doing this research just to learn about the biology and ecology of gypsy moths. We want to use what we learn to make the world a better place."

This research received financial support from the U. S. Environmental Protection Agency STAR Fellowship and the U. S. Department of Agriculture.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>