Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gypsy Moth Management Made More Efficient, Cost-Effective

07.04.2008
A computer model that provides land managers with a more efficient and cost-effective approach for controlling gypsy moths and other invasive pests has been created by biologists at Penn State University and the University of Cambridge in the United Kingdom.

Gypsy moths, which were introduced to North America in the late 1860s, are responsible for the defoliation of over a million acres of forest land each year and the loss of tens of millions of dollars.

In a paper to be published later this month (April 2008) in the journal Ecological Applications, the team's results indicate that the best strategies for managing the destructive pests include eradicating medium-density infestations and reducing high-density infestations, rather than reducing spreading from the main infestation.

"Our model is state dependent, which means that it recommends different management strategies depending on the situation," said Katriona Shea, Penn State associate professor of biology and the team's leader. "Most managers currently use the same strategy in all situations, but our model suggests that by tailoring their approach to a particular situation, managers can be more effective in slowing the spread of invasive species."

Saving time and money is of the utmost importance with gypsy moths, which have by now spread throughout the northeastern United States and into the Midwest. "Some people argue that it's just a matter of time before the moths spread across the entire United States, so why bother trying to slow them down?" said Shea. "But we see it differently. We hope that by slowing their spread we can buy some time to find a better way to deal with them."

Although the model has little to offer those states that already have succumbed to infestation, it does have the potential to slow or halt the moths' spread into new areas. States that stand to benefit the most include North Carolina, Virginia, West Virginia, Ohio, Indiana, Illinois, and Wisconsin.

"Where I live in Pennsylvania, it's too late to slow the moths' spread because they already are prevalent across the entire state," said Shea. "It's so bad here that, at certain times, if you stand in the forest and listen, it sounds like it's raining, but what's raining is their excrement." Nevertheless, she added, "It's not too late to try to control their abundance in Pennsylvania. There is still a lot that can be done."

The model's results allow managers in those states where the moths are actively spreading to select a management strategy based on the number of medium-density and high-density infestation patches within their jurisdictions. The model ignores smaller patches because they often go extinct by themselves and, if they escape extinction as small patches, they will be detected in the model as medium patches. For example, if an area contains 20 medium patches and 20 large patches, the model suggests that managers should focus their energy and money on reducing some of those large patches to medium patches. This strategy, ultimately, would be the most effective means of controlling gypsy moths in that particular circumstance. "The model allows us to determine an exact optimal solution to a management problem," said Tiffany Bogich, a member of the reserach team who formerly was an undergraduate student at Penn State and now is a graduate student at the University of Cambridge.

"We really think this model, tailored to particular locations, could be quite useful to land managers," said Shea. "After all, we're not doing this research just to learn about the biology and ecology of gypsy moths. We want to use what we learn to make the world a better place."

This research received financial support from the U. S. Environmental Protection Agency STAR Fellowship and the U. S. Department of Agriculture.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>