Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A common genetic mechanism discovered in nitrogen-fixing plants

Some soil microorganisms are capable of forging associations with plant roots in the form of symbioses. Certain of these relationships play a highly important ecological and agronomic role.

Arbuscular mycorrhizal symbiosis (which links a plant to a fungus) thus gives plants a mechanism for improving their supply of water and mineral nutrition. This association has been in existence for 400 million years and appears to have accompanied plants in their colonization of the terrestrial environment.

At present it involves about 80% of plant species. In a more recent era, about 60 million years B. P., the symbiosis which became established between soil bacteria, Rhizobium species, and leguminous plants doted them with the ability, unique among mass-produced crop plants, to capture nutrient nitrogen from the air. Rhizobium forms specialized organs, nodules, on the plant roots. These are capable of transforming atmospheric nitrogen into ammonium that can be directly assimilated by the plant. In return, the plant supplies the microorganisms with nutrients in the form of complex carbohydrates.

Scientists have for many years been seeking to unravel the genetic mechanisms that govern such mutually beneficial relationships, on the one hand between plants and bacteria, on the other between plants and fungi. Investigations by a French team in 2000 had shown that some genetic signalling mechanisms operating in the symbiosis between leguminous plants and Rhizobium type bacteria and such plants and mycorrhizal fungi involved a common genetic element named SymRK. This type of gene was already known to operate in the recognition of Nod factors, signalling substances emitted by the Rhizobium type bacteria which are essential for root nodule formation.

The actinorhizal plants make up another category of plants which have acquired the ability to live symbiotically with a nitrogen fixing bacterium, in this case Frankia. These pioneer plant species, whose host-symbiont mechanisms remain little studied, generally colonize disturbed environments, such as volcanic soils or mining-affected ground, and nitrogen-poor terrains such as moraines or sandy soils. About 260 species of actinorhizal plants exist, spread among 24 genera and classified into eight families of angiosperms, flowering plants. An IRD team, jointly with a laboratory of the University of Munich, turned particular attention to the tropical tree Casuarina, or Australian pine. The first step employed molecular methods to find the sequence coding for the SymRK gene in the Casuarina genome. Once isolated, the question was whether or not Casuarina needed this gene to establish its symbiosis with the bacterium Frankia.

The team therefore developed transgenic plants in which SymRK gene expression was strongly reduced. Subsequent comparison of these plants’ ability to form symbiotic root nodules with that of control plants showed that the plants with lowered SymRK gene expression produced only half as many root nodules as the controls. The same modified individuals also showed strongly reduced mycorrhization compared with the unaltered Australian pine. The results therefore demonstrated that the weakened SymRK gene expression produced a considerable loss of Casuarina’s nitrogen-fixing ability and also a reduction in its aptitude to form mycorrhiza. More generally, these conclusions bring out the fact that, in nitrogen fixing plants, a common genetic factor seems essential for setting-up the three types of symbiotic association involving bacteria (Rhizobium or Frankia) or a mycorrhizal fungus.

Improved understanding of these genetic mechanisms could in the coming years contribute to the development of procedures for performing the transfer of the genetic material necessary for atmospheric nitrogen fixation to plants like cereals, which do not possess this faculty. Although rice, for example, establishes a symbiotic relation with a mycorrhizal fungus, it is incapable of developing nitrogen fixing nodules.

Modification of its genome to equip it with this ability could then open the way to considerable reduction of input of nitrogen fertilizers on this crop and thus cut down the resulting soil pollution.

Grégory Fléchet | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>