Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Documented Case of Pest Resistance to Biotech Cotton

08.02.2008
A pest insect known as bollworm is the first to evolve resistance in the field to plants modified to produce an insecticide called Bt, according to a new research report.

Bt-resistant populations of bollworm, Helicoverpa zea, were found in more than a dozen crop fields in Mississippi and Arkansas between 2003 and 2006.

"What we're seeing is evolution in action," said lead researcher Bruce Tabashnik. "This is the first documented case of field-evolved resistance to a Bt crop.”

Bt crops are so named because they have been genetically altered to produce Bt toxins, which kill some insects. The toxins are produced in nature by the widespread bacterium Bacillus thuringiensis, hence the abbreviation Bt.

The bollworm resistance to Bt cotton was discovered when a team of University of Arizona entomologists analyzed published data from monitoring studies of six major caterpillar pests of Bt crops in Australia, China, Spain and the U.S. The data documenting bollworm resistance were first collected seven years after Bt cotton was introduced in 1996.

"Resistance is a decrease in pest susceptibility that can be measured over human experience," said Tabashnik, professor and head of UA's entomology department and an expert in insect resistance to insecticides. "When you use an insecticide to control a pest, some populations eventually evolve resistance."

The researchers write in their report that Bt cotton and Bt corn have been grown on more than 162 million hectares (400 million acres) worldwide since 1996, “generating one of the largest selections for insect resistance ever known."

Even so, the researchers found that most caterpillar pests of cotton and corn remained susceptible to Bt crops.

"The resistance occurred in one particular pest in one part of the U.S.,"
Tabashnik said. "The other major pests attacking Bt crops have not evolved resistance. And even most bollworm populations have not evolved resistance."

The field outcomes refute some experts' worst-case scenarios that predicted pests would become resistant to Bt crops in as few as three years, he said.

“The only other case of field-evolved resistance to Bt toxins involves resistance to Bt sprays," Tabashnik said. He added that such sprays have been used for decades, but now represent a small proportion of the Bt used against crop pests.

The bollworm is a major cotton pest in the southeastern U.S. and Texas, but not in Arizona. The major caterpillar pest of cotton in Arizona is a different species known as pink bollworm, Pectinophora gossypiella, which has remained susceptible to the Bt toxin in biotech cotton.

Tabashnik and his colleagues' article, "Insect resistance to Bt crops:
evidence versus theory," will be published in the February issue of Nature Biotechnology. His co-authors are Aaron J. Gassmann, a former UA postdoctoral fellow now an assistant professor at Iowa State University; David W. Crowder, a UA doctoral student; and Yves Carrière, a UA professor of entomology. Tabashnik and Carrière are members of UA's BIO5 Institute.

The U.S. Department of Agriculture funded the research.

"Our research shows that in Arizona, Bt cotton reduces use of broad-spectrum insecticides and increases yield," said Carrière. Such insecticides kill both pest insects and beneficial insects.

To delay resistance, non-Bt crops are planted near Bt crops to provide "refuges" for susceptible pests. Because resistant insects are rare, the only mates they are likely to encounter would be susceptible insects from the refuges. The hybrid offspring of such a mating generally would be susceptible to the toxin. In most pests, offspring are resistant to Bt toxins only if both parents are resistant.

In bollworm, however, hybrid offspring produced by matings between susceptible and resistant moths are resistant. Such a dominant inheritance of resistance was predicted to make resistance evolve faster.

The UA researchers found that bollworm resistance evolved fastest in the states with the lowest abundance of refuges.

The field outcomes documented by the global monitoring data fit the predictions of the theory underlying the refuge strategy, Tabashnik said.

Although first-generation biotech cotton contained only one Bt toxin called Cry1Ac, a new variety contains both Cry1Ac and a second Bt toxin, Cry2Ab.

The combination overcomes pests that are resistant to just one toxin.

The next steps, Tabashnik said, include conducting research to understand inheritance of resistance to Cry2Ab and developing designer toxins to kill pests resistant to Cry1Ac.

Researchers' disclosure of competing financial interests:
Although preparation of this article was not supported by organizations that may gain or lose financially through its publication, the authors have received support for other research from Monsanto Company and Cotton, Inc.
One of the authors (B. T.) is a co-author of a patent application filed with the World Intellectual Property Organization on engineering modified Bt toxins to counter pest resistance, which is related to research published in

2007 (Science 318: 1640-1642. 2007).

Researcher contact information:
Bruce Tabashnik, 520-621-1141
brucet@ag.arizona.edu
language: English

Yves Carrière, 520-626-8329
ycarrier@ag.arizona.edu
languages: English and French
Related Web sites:
Bruce Tabashnik
http://ag.arizona.edu/ento/faculty/tabashnik.htm
Yves Carriere
http://ag.arizona.edu/ento/faculty/carriere.htm
UA Department of Entomology
http://ag.arizona.edu/ento/
UA College of Agriculture and Life Sciences http://ag.arizona.edu/
UA's BIO5 Institute
www.bio5.org

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>