Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plantable containers show promise for use in groundcover production, landscaping

06.05.2014

Sustainable paper, bioplastic containers require less transplant time, save labor, reduce plastic

Consumer demand for groundcover plants for residential and commercial landscapes is on the rise. Low-growing, low-maintenance groundcovers are favored not only for their aesthetic appeal, but also for their environmental contributions such as the ability to reduce storm water runoff and control weeds.


Ajuga repens "Bronze Beauty" is shown eight weeks after transplanting into SoilWrapTM containers. A study showed plantable containers like this type to be suitable for growing groundcover plants.

Credit: Photo by Dewayne Ingram.

Looking for sustainable alternatives to growing plants in standard plastic containers, researchers uncovered a variety of groundcover plants that they say can be successfully grown in ecofriendly "plantable" containers.

Susmitha Nambuthiri and Dewayne Ingram, authors of a study published in HortTechnology, explained that current production practices for groundcover can be limiting. "Groundcover plants are currently available to landscapers as small plants in celled flats or bare root, or as more mature plants in 1-gallon containers," they said. "The cost of large numbers of plants that are required to cover an area is often a limiting factor, considering most landscape installation budgets."

Nambuthiri and Ingram said that conversations with landscapers revealed a need for locally available perennial groundcover plants in alternative sizes that can help reduce maintenance requirements while providing quick cover in landscapes. "The landscape industry is a visible segment of the green industry, and having hundreds of plastic containers scattered across a client's landscape during installation can be detrimental to the industry's image," they explained.

They added that recycling of plastic containers is not readily available in some areas, leading some consumers to view the production of groundcovers in individual plastic containers as an unsustainable practice.

Seeking alternatives to these concerns, Ingram and Nambuthiri conducted two experiments to determine if "plantable" containers could be used efficiently in a groundcover production and marketing system. In the first study, the team studied plants they identified as having potential suitability for a rapid turnover system for groundcover production in flats and using plantable containers (compared with standard plastic containers). The follow-up study evaluated plant performance during production and in the landscape from the same production system with multiple planting dates.

The experiments showed that 'Bronze Beauty' ajuga, 'Herman's Pride' lamiastrum, 'Beacon Silver' lamium, 'Immergrunchen' sedum, 'Red Carpet Stonecrop' sedum, and 'Vera Jameson' sedum could be grown to a marketable size from 1.5-inch plugs in 8 weeks when transplanted in May through August. 'Big Blue' liriope from bare root bibs required 12 weeks.

Results also revealed that ecofriendly paper and bioplastic containers were suitable for growing the groundcover plants. Plant growth in a 90-mm paper container and 80-mm bioplastic container was determined to be similar to that of plant growth in standard 3-inch rigid plastic containers. The plants grown in paper and bioplastic also required 20% less time to transplant into the landscape, and grew rapidly after transplanting in the landscape, resulting in labor savings and less plastic for recycling or disposal. Peat containers yielded smaller plants and slower ground coverage after transplanting in the field than plants grown in the other containers.

###

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/content/24/1/48.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | Eurek Alert!

Further reports about: ASHS HortTechnology Horticultural bioplastic landscape landscapes plastic savings

More articles from Agricultural and Forestry Science:

nachricht Recycled Water, Salt-Tolerant Grass a Water-Saving Pair
29.06.2015 | American Society of Agronomy (ASA), Crop Science Society of America (CSSA), Soil Science Society of America (SSSA)

nachricht Selective breeding and immunization improve fish farm yields
29.06.2015 | Universiti Putra Malaysia (UPM)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

Im Focus: Superslippery islands (but then they get stuck)

A simple reversible process that changes friction in the nanoworld

(Nano)islands that slide freely on a sea of copper, but when they become too large (and too dense) they end up getting stuck: that nicely sums up the system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Breaking through a double wall with a sledgehammer

29.06.2015 | Life Sciences

Lean but sated: Molecular Switch for a Healthy Metabolism discovered

29.06.2015 | Life Sciences

Spintronics Advance Brings Wafer-Scale Quantum Devices Closer to Reality

29.06.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>