Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plantable containers show promise for use in groundcover production, landscaping

06.05.2014

Sustainable paper, bioplastic containers require less transplant time, save labor, reduce plastic

Consumer demand for groundcover plants for residential and commercial landscapes is on the rise. Low-growing, low-maintenance groundcovers are favored not only for their aesthetic appeal, but also for their environmental contributions such as the ability to reduce storm water runoff and control weeds.


Ajuga repens "Bronze Beauty" is shown eight weeks after transplanting into SoilWrapTM containers. A study showed plantable containers like this type to be suitable for growing groundcover plants.

Credit: Photo by Dewayne Ingram.

Looking for sustainable alternatives to growing plants in standard plastic containers, researchers uncovered a variety of groundcover plants that they say can be successfully grown in ecofriendly "plantable" containers.

Susmitha Nambuthiri and Dewayne Ingram, authors of a study published in HortTechnology, explained that current production practices for groundcover can be limiting. "Groundcover plants are currently available to landscapers as small plants in celled flats or bare root, or as more mature plants in 1-gallon containers," they said. "The cost of large numbers of plants that are required to cover an area is often a limiting factor, considering most landscape installation budgets."

Nambuthiri and Ingram said that conversations with landscapers revealed a need for locally available perennial groundcover plants in alternative sizes that can help reduce maintenance requirements while providing quick cover in landscapes. "The landscape industry is a visible segment of the green industry, and having hundreds of plastic containers scattered across a client's landscape during installation can be detrimental to the industry's image," they explained.

They added that recycling of plastic containers is not readily available in some areas, leading some consumers to view the production of groundcovers in individual plastic containers as an unsustainable practice.

Seeking alternatives to these concerns, Ingram and Nambuthiri conducted two experiments to determine if "plantable" containers could be used efficiently in a groundcover production and marketing system. In the first study, the team studied plants they identified as having potential suitability for a rapid turnover system for groundcover production in flats and using plantable containers (compared with standard plastic containers). The follow-up study evaluated plant performance during production and in the landscape from the same production system with multiple planting dates.

The experiments showed that 'Bronze Beauty' ajuga, 'Herman's Pride' lamiastrum, 'Beacon Silver' lamium, 'Immergrunchen' sedum, 'Red Carpet Stonecrop' sedum, and 'Vera Jameson' sedum could be grown to a marketable size from 1.5-inch plugs in 8 weeks when transplanted in May through August. 'Big Blue' liriope from bare root bibs required 12 weeks.

Results also revealed that ecofriendly paper and bioplastic containers were suitable for growing the groundcover plants. Plant growth in a 90-mm paper container and 80-mm bioplastic container was determined to be similar to that of plant growth in standard 3-inch rigid plastic containers. The plants grown in paper and bioplastic also required 20% less time to transplant into the landscape, and grew rapidly after transplanting in the landscape, resulting in labor savings and less plastic for recycling or disposal. Peat containers yielded smaller plants and slower ground coverage after transplanting in the field than plants grown in the other containers.

###

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/content/24/1/48.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | Eurek Alert!

Further reports about: ASHS HortTechnology Horticultural bioplastic landscape landscapes plastic savings

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>