Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant hormone increases cotton yields in drought conditions

11.03.2010
A naturally occurring class of plant hormones called cytokinins has been found to help increase cotton yields during drought conditions, according to Agricultural Research Service (ARS) scientists.

Cytokinins promote cell division and growth in plants. In cotton, cytokinins stimulate the growth of the main plant stem and branches. Commercially produced cytokinins are routinely applied in apple and pistachio orchards to promote fruit growth.

John Burke, director of the ARS Cropping Systems Research Laboratory in Lubbock, Texas, found that applying cytokinins to cotton crops can increase yields in water-limited environments with reduced irrigation or no irrigation. Burke was granted a patent for his discovery.

Half of the U.S.-produced cotton is grown in the arid high plains of Texas. In addition to a short growing season, 60 to 65 percent of the acreage in the area is dry land and relies on rainfall for soil moisture. Young cotton seedlings have small root systems, making it difficult for them to reach available soil water. Cytokinins trick the young plant's water stress defenses, prompting the plant to quickly build a bigger root system to access deep soil moisture. They also stimulate the growth of a protective wax on the surface of the plant that helps reduce water loss.

... more about:
»ARS »Cytokinins »USDA »root system »soil moisture

Tests conducted by Burke found one application of cytokinins produced a 5 to 10 percent increase in yields under water-reduced conditions. Additionally, tests determined that cytokinins didn't help or hinder yields under fully irrigated or rainy conditions, making it safe for use in all weather environments. There is also no extra work involved for the grower because cytokinins can be applied when conducting normal weed-management practices early in the season.

To be effective, the cytokinins should be applied at a relatively low concentration to cotton seeds or to cotton plants at an early stage of development. ARS is working closely with commercial companies to make this material available to cotton growers in the future.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). This research supports the USDA priority of responding to climate change.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Stephanie Yao | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Cytokinins USDA root system soil moisture

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>