Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pickleweed Tolerates Irrigation with Seawater and High Levels of Boron

10.10.2008
Researchers have discovered that reusing saline drainage water and applying it to salt-tolerant crops in California’s San Joaquin Valley can help reduce the environmental impact of excess drainage volumes. The study focused on pickleweed, sold in European markets as a salad ingredients, and its ability to tolerate irrigation with seawater and drainage water with high concentrations of boron.

Reuse of agricultural drainage water (DW) for irrigation is one of the few on-farm water management options available to growers on the west side of California’s San Joaquin Valley (SJV) for reducing drainage water volumes (San Joaquin Valley Drainage Implementation Program, 2000).

Management strategies that reduce drainage volumes are attractive because they would reduce the area required for environmentally sensitive evaporation ponds and lower the costs associated with disposal of the final effluent. Moreover, reductions in drainage volume would reduce the amount of trace elements (Se, B and Mo) and nutrients reaching the San Joaquin River and would help grower’s meet newly established targets for total maximum daily loads (TMDLs).

In sequential reuse systems, saline drainage water is sequentially applied on progressively more salt-tolerant crops where application of concentrated effluents to halophytes is the final step in the sequence prior to disposal or treatment. However the effectiveness of halophytes in reducing drainage volume is dependent upon their ability to tolerate extremely high levels of salinity and boron over the long term, maintain high rates of evapotranspiration, and thrive in saline-sodic conditions with poor physical conditions.

Grattan et al. conducted greenhouse experiments with Pickleweed, Salicornia bigelovii Torr., a halophyte native to North American coasts and arguably one of the most salt-tolerant vascular plants. It has also sold in European markets as green tips used in salads and cooking and its seeds produce oil that is high in polyunsaturated fat. The authors found that S. bigelovii grow very well over a range of salinity treatments (19–52 dS/m) comprised of either seawater or hyper-saline drainage water. Moreover, the plants were also able to tolerate high concentrations of boron (28 mg/L), an important constituent found in drainage water. The most remarkable find for Grattan and co-investigators was that evapotranspiration (ET) rates from these plants exceeded that lost from an evaporation pan by 1.5 to 2.5 times. Grattan and co-workers also developed a method to separate evaporation and transpiration by accounting for the changes in the isotopic signature of water in the reservoir due to evaporation. They found that high ET rates were due primarily to high transpiration rates (> 78% of ET).

“This finding is somewhat surprising considering this halophyte has no true leaves,” commented Grattan. Although some challenges remain regarding the consistent establishment of S. bigelovii under field conditions, these data indicate that hypersaline drainage water, characteristic of California’s Westside of the San Joaquin Valley, can be used to irrigate this halophyte and substantially reduce drainage volumes.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/37/5_Supplement/S-149.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit http://www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>