Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pickleweed Tolerates Irrigation with Seawater and High Levels of Boron

Researchers have discovered that reusing saline drainage water and applying it to salt-tolerant crops in California’s San Joaquin Valley can help reduce the environmental impact of excess drainage volumes. The study focused on pickleweed, sold in European markets as a salad ingredients, and its ability to tolerate irrigation with seawater and drainage water with high concentrations of boron.

Reuse of agricultural drainage water (DW) for irrigation is one of the few on-farm water management options available to growers on the west side of California’s San Joaquin Valley (SJV) for reducing drainage water volumes (San Joaquin Valley Drainage Implementation Program, 2000).

Management strategies that reduce drainage volumes are attractive because they would reduce the area required for environmentally sensitive evaporation ponds and lower the costs associated with disposal of the final effluent. Moreover, reductions in drainage volume would reduce the amount of trace elements (Se, B and Mo) and nutrients reaching the San Joaquin River and would help grower’s meet newly established targets for total maximum daily loads (TMDLs).

In sequential reuse systems, saline drainage water is sequentially applied on progressively more salt-tolerant crops where application of concentrated effluents to halophytes is the final step in the sequence prior to disposal or treatment. However the effectiveness of halophytes in reducing drainage volume is dependent upon their ability to tolerate extremely high levels of salinity and boron over the long term, maintain high rates of evapotranspiration, and thrive in saline-sodic conditions with poor physical conditions.

Grattan et al. conducted greenhouse experiments with Pickleweed, Salicornia bigelovii Torr., a halophyte native to North American coasts and arguably one of the most salt-tolerant vascular plants. It has also sold in European markets as green tips used in salads and cooking and its seeds produce oil that is high in polyunsaturated fat. The authors found that S. bigelovii grow very well over a range of salinity treatments (19–52 dS/m) comprised of either seawater or hyper-saline drainage water. Moreover, the plants were also able to tolerate high concentrations of boron (28 mg/L), an important constituent found in drainage water. The most remarkable find for Grattan and co-investigators was that evapotranspiration (ET) rates from these plants exceeded that lost from an evaporation pan by 1.5 to 2.5 times. Grattan and co-workers also developed a method to separate evaporation and transpiration by accounting for the changes in the isotopic signature of water in the reservoir due to evaporation. They found that high ET rates were due primarily to high transpiration rates (> 78% of ET).

“This finding is somewhat surprising considering this halophyte has no true leaves,” commented Grattan. Although some challenges remain regarding the consistent establishment of S. bigelovii under field conditions, these data indicate that hypersaline drainage water, characteristic of California’s Westside of the San Joaquin Valley, can be used to irrigate this halophyte and substantially reduce drainage volumes.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

The Journal of Environmental Quality, is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>