Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone Affects Forest Watersheds

19.10.2012
Scientists find ozone causes forests to use more water, reducing availability in the Southeast

U.S. Forest Service and Oak Ridge National Laboratory (ORNL) scientists have found that rising levels of ozone, a greenhouse gas, may amplify the impacts of higher temperatures and reduce streamflow from forests to rivers, streams, and other water bodies. Such effects could potentially reduce water supplies available to support forest ecosystems and people in the southeastern United States.

Impacts of ozone, a global scale pollutant, on forests are not well understood at a large scale. This modeling study indicates that current and projected increases in ozone in the 21st century will likely enhance the negative effects of warming on watersheds, aggravating drought and altering stream flow. Using data on atmospheric water supply and demand and statistical models, researchers with the Forest Service and ORNL were able to show what effects ozone can have on stream flow in dry seasons. Published in the November issue of the journal Global Change Biology, the study suggests that ozone has amplified the effects of warmer temperatures in reducing streamflow in forested watersheds in the southeastern United States.

"From previous studies, we know a lot about ozone's influences on crops and leaves of young trees. However, no studies have investigated the impacts of ozone on water flow in large forested watersheds," says Ge Sun, research hydrologist with the Forest Service Eastern Forest Environmental Threat Assessment Center "Our studies show that ozone has a possible connection in the reduction of streamflow in late summer when flow is generally lowest, particularly in areas with high ozone levels such as the Appalachian Mountains in the Southeast."

Researchers developed models based on 18 to 26 years of data and observed streamflow in response to climate and atmospheric chemistry during the growing season. The research team evaluated individual and interactive effects of ozone on late season streamflow for six southeastern forested watersheds ranging in size from 38 acres to more than 3,700 square miles. Estimates of ozone's influence on streamflow ranged from 7 percent in the area of lowest ozone in West Virginia to 23 percent in the areas of highest exposure in Tennessee.

The findings from this study along with a wide range of previous field studies challenge assumptions derived from small controlled studies that ozone exposure reduces water loss from trees and forests. The present study of mature forests under moderate ozone exposure shows however those ecosystems may react in a different way than can be predicted by short-range, intensive studies.

"We're predicting that forests under high ozone conditions will use more water instead of less, as was previously assumed," says Samuel "Sandy" McLaughlin, scientist emeritus from the ORNL Environmental Sciences Division. "The concern is that ozone-induced increases in plant water loss could aggravate drought impacts on forests, and reduce the water available for people and stream life dependent on water flow during the dry seasons."

Forest Service and ORNL scientists also collaborated with researchers from the University of Virginia, Lamont Doherty Observatory, and the University of Gothenburg, Sweden.
Access the article online at http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2012.02787.x/abstract

Additional Information

Forest Service Contacts

Ge Sun
Eastern Threat Center research hydrologist
(919) 515-9498; gesun@fs.fed.us

Ge Sun | EurekAlert!
Further information:
http://www.forestthreats.org

More articles from Agricultural and Forestry Science:

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

nachricht Maize pest exploits plant defense compounds to protect itself
28.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>