Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ornamental fish industry faces problems with antibiotic resistance

16.01.2013
The $15 billion ornamental fish industry faces a global problem with antibiotic resistance, a new study concludes, raising concern that treatments for fish diseases may not work when needed – and creating yet another mechanism for exposing humans to antibiotic-resistant bacteria.
The risk to humans is probably minor unless they frequently work with fish or have compromised immune systems, researchers said, although transmission of disease from tropical fish has been shown to occur. More serious is the risk to this industry, which has grown significantly in recent years, and is now a $900 million annual business in the United States.

There are few regulations in the U.S. or elsewhere about treating ornamental fish with antibiotics, experts say. Antibiotics are used routinely, such as when fish are facing stress due to transport, whether or not they have shown any sign of disease.

“We expected to find some antibiotic resistance, but it was surprising to find such high levels, including resistance in some cases where the antibiotic is rarely used,” said Tim Miller-Morgan, a veterinary aquatics specialist with Oregon State University. “We appear to already have set ourselves up for some pretty serious problems within the industry.”

In the new study, 32 freshwater fish of various species were tested for resistance to nine different antibiotics, and some resistance was found to every antibiotic. The highest level of resistance, 77 percent, was found with the common antibiotic tetracycline. The fish were tested in Portland, Ore., after being transported from Colombia, Singapore and Florida.

Findings of the study were reported in the Journal of Fish Diseases.

The bacterial infections found in the fish included Aeromonas, Pseudomonas, Staphylococcus and others, several of which can infect both fish and humans.

“The range of resistance is often quite disturbing,” the scientists wrote in their report. “It is not uncommon to see resistance to a wide range of antibiotic classes, including beta-lactams, macrolides, tetracyclines, sulphonamides, quinolones, cephalosporins and chloramphenicol.”

Problems and concerns with antibiotic resistance have been growing for years, Miller-Morgan said. The nature of the resistance can range widely, causing an antibiotic to lose some, or all of its effectiveness.

There have been documented cases of disease transmission from fish to humans, he said, but it’s not common. It would be a particular concern for anyone with a weak or compromised immune system, he pointed out, and people with such health issues should discuss tropical fish management with their physician. Workers who constantly handle tropical fish may also face a higher level of risk.

From an industry perspective, losses of fish to bacterial disease may become increasingly severe, he said, because antibiotics will lose their effectiveness.

Anyone handling tropical fish can use some basic precautions that should help, Miller-Morgan said. Consumers should buy only healthy fish; avoid cleaning tanks with open cuts or sores on their hands; use gloves; immediately remove sick fish from tanks; consider quarantining all new fish in a separate tank for 30 days; wash hands after working with fish; and never use antibiotics in a fish tank unless actually treating a known fish disease caused by bacteria.

“We don’t think individuals should ever use antibiotics in a random, preventive or prophylactic method,” Miller-Morgan said. “Even hobbyists can learn more about how to identify tropical fish parasites and diseases, and use antibiotics only if a bacterial disease is diagnosed.”

On an industry level, he said, considerable progress could be made with improvements in fish husbandry, better screening and handling, and use of quarantines, rather than antibiotics, to reduce fish disease.

The ornamental fish industry is large and diverse, including trade of more than 6,000 species of freshwater and marine fish from more than 100 different countries. About half the supply originates in Asia, and freshwater farming of ornamental fish is a rapidly growing industry.

Also increasing is the number of trained fish veterinarians, who can help fish hobbyists to reduce disease loss and save treasured pets. More information is available from the World Aquatic Veterinary Medical Association and the American Association of Fish Veterinarians. A database of aquatic veterinarians is available online, at http://aquavetmed.info

About the OSU College of Veterinary Medicine: The primary mission of the OSU College of Veterinary Medicine is to serve the people of Oregon and the various livestock and companion animal industries by furthering the understanding of animal medical practices and procedures. Through research, clinical practice and extension efforts in the community, the college provides Oregon's future veterinarians with one of the most comprehensive educations available anywhere.

Tim Miller-Morgan | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>