Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Opening a can of worms: serendipitous discovery reveals earthworms more diverse than first thought

Scientists have found that the UK's common or garden earthworms are far more diverse than previously thought, a discovery with important consequences for agriculture.

BBSRC-funded scientists at Cardiff University, led by Dr Bill Symondson and performed in the laboratory by postdoctoral scientist Dr Andrew King and undergraduate student Ms Amy Tibble, have found that many of the common earthworm species found in gardens and on agricultural land are actually made up of a number of distinct species that may have different roles in food chains and soil structure and ecology.

This discovery was made when efforts to develop better tools to identify earthworm DNA in the guts of slug and worm-eating beetles produced some very unexpected results. The research is published today (10 October 2008) in Molecular Ecology.

Dr Symondson said: "When we were working to find new tools to detect earthworm DNA we started getting results that were not really what we expected to see and that indicated the presence of several new earthworm species. After investigating this further we eventually found that there are significant numbers of what we call 'cryptic species'. These different species live in the same environment and have the same outward appearance, but do not interbreed and have clearly distinct DNA sequences."

"Earthworms play a major role in the agricultural environment because they are involved in many soil processes such as soil turnover, aeration and drainage, and the breakdown and incorporation of organic matter. For this reason, they have often been the subject of research into, for example, ecology and toxicology. It is vitally important that we know exactly which species we are studying, in case they respond differently from one another - to agrochemicals or heavy metals in the soil, for example."

Dr Symondson and his team chose to study nine different species of common earthworm and collected samples from Britain and mainland Europe. They examined the sequence of specific parts of the worms' DNA to establish the evolutionary relationships between individuals from within each species. They began by looking at 71 earthworms representing the nine recognised species and found evidence that four of the nine common earthworm species are actually made up of complexes of multiple species. And furthermore, detailed analysis of one common species - Allolobophora chlorotica - shows that it is made up of at least three species in Britain and one additional species in central Europe.

Dr Symondson continued: "Any further earthworm research will now have to be done with the knowledge that in many cases there are multiple species where we thought there was just one. We need to establish for certain whether the different cryptic species play different roles in the ecology of our agricultural land or have different tolerances to potential environmental stresses such as toxins, parasites, or extremes of temperature."

Steve Visscher, Deputy Chief Executive, BBSRC said: "Maintaining productive agricultural land is an important challenge. It is exciting to see that while investigating one important issue for agriculture Dr Symondson and his team were able to observe another crucial aspect. These researchers didn't set out to find new species of worms but by following up on an unusual observation in their work they have uncovered several new species already. This knowledge will be important for many people researching ways to get the most out of our agricultural land in the future."

| alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>